978

Adjacency constraints in harvest scheduling: an aggregation heuristic

JuaN M. TorRES-R0J0! AND J. DouGLAS BRODIE
Department of Forest Resources Management, Oregon State University, Corvallis, OR 97331-5703, U.S.A.
Received July 27, 1989
Accepted January 21, 1990

TORRES-R0OJO, J. M., and BRODIE, J. D. 1990. Adjacency constraints in harvest scheduling: an aggregation heuristic.
Can. J. For. Res. 20: 978-986.

An heuristic for adjacency constraint aggregation is proposed. The heuristic is composed of two procedures. Procedure 1
consists of identifying harvesting areas for which it is not necessary to write adjacency constraints. Procedure 2 consists
of writing one adjacency constraint for each one of the harvesting areas not identified in procedure 1. Such adjacency
constraints consider all the adjacency relations between the harvesting area and its surrounding areas. The heuristic
is based on the concept of penalties and the four-color theorem. The aggregated constraints present fewer variables
per constraint than the aggregator described by B.J. Meneghin, M.W. Kirby, and J.G. Jones (1988. USDA For. Serv.
Rocky Mt. For. Range Exp. Stn. Gen. Tech. Rep. RM-161. pp. 46-53) and can easily be generated mechanically from
the adjacency matrix. In addition, the proposed heuristic does not require the tedious task of identifying type { and 2
constraints as with Meneghin’s algorithm. Hence the combinatorial work to compute the aggregated constraints is reduced
significantly. Comparisons showed that the proposed heuristic requires about a third of the constraints required by
the conventional adjacency constraint formulation and about the same number of constraints as the procedure suggested
by B.J. Meneghin, M.W. Kirby, and J.G. Jones (1988).

TORRES-R0OJO, J. M., et BRODIE, J. D. 1990. Adjacency constraints in harvest scheduling: an aggregation heuristic.
Can. J. For. Res. 20 : 978-986.

Une méthode heuristique est proposée pour ’agrégation de contraintes contigiies. L.a méthode heuristique est composée
de deux procédures. La premiére consiste & identifier des surfaces de coupe pour lesquelles il n’est pas nécessaire d’écrire
des contraintes contigiies. La deuxiéme consiste & écrire une contrainte contigiie pour chacune des surfaces de coupe
qui ne sont pas identifiées dans la premiére procédure. De telles contraintes contiglies considérent toutes les relations
contigties entre les surfaces de coupe et les surfaces avoisinantes. La méthode heuristique est basée sur le concept des
pénalités et le «four-color theorem.» Les contraintes agrégées présentent moins de variables par contrainte que ’agrégat
décrit par B.J. Meneghin, M.W. Kirby et J.G. Jones (1988. USDA For. Serv. Rocky Mt. For. Range Exp. Stn. Gen.
Tech. Rep. RM-161. p. 46-53) et peuvent &tre facilement générées mécaniquement a partir de la matrice adjacente.
En plus, la méthode heuristique proposée ne requiert pas la tiche fastidieuse d’identifier les contraintes de type ! et
de type 2 comme dans P’algorithme de Meneghin. Ainsi, le travail combinatoire de calculer les contraintes contigiies
est réduit de fagon significative. Les comparaisons montrent que la méthode heuristique proposée requiert environ
le tiers des contraintes requises par la formulation conventionnelle des contraintes contigiies et & peu prés le méme

nombre de contraintes que la procédure suggérée par B.J. Meneghin, M.W. Kirby et J.G. Jones (1988).

introduction

Tactical planning requires consideration of spatial relation-
ships among harvesting areas. Such spatial considerations
often reflect legal or biological requirements for the manage-
ment of forests, or in other instances, they simply are logistic
requirements for the practical implementation of forest
plans. Sometimes these spatial considerations are require-
ments for multiple objective forest planning, such as wildlife
habitat management or necessary restrictions on sediment
production for the protection of fisheries. These types of
spatial requirements are often modeled through adjacency
constraints. Such constraints restrict the selection of the
harvesting areas so that adjacent harvesting areas sharing
a common border (or a common corner) cannot be harvested
in the same period.

Adjacency constraints add a large number of rows to any
integer programming or mixed integer programming for-
mulation on an area-based harvest scheduling problem. So
these formulations are often limited by the number of con-
straints rather than the number of variables. Hence con-
straint aggregation of adjacency restrictions can help fit
those large complex formulations into standard linear pro-

!On graduate leave from Instituto Nacional de Investigaciones
Forestales, Agricolas y Pecuarias, Mexico.

Printed in Canada / Imprimé au Canada

[Traduit par la revue]

gramming or integer programming solution packages. More
important potential applications of the aggregated con-
straints are improving the efficiency of heuristics to solve
special integer programming problems such as the multi-
constrained knapsack problem, or its use when the solution
to the integer programming problem is obtained through
relaxation, where a small number of constraints is desired.

Aggregation of equations with integer coefficients (such
as adjacency constraints) has been studied intensively
because of its simplicity and with the aim of deriving
aggregators with manageable coefficients that are able to
improve the computational efficiency of current solution
algorithms (Fishburn and Kochenberg 1985). There exist
some reasonable concerns about the improvement in com-
putational efficiency by using aggregated constraints
(Onyekwelu 1983). Some authors have even suggested that
disaggregating constraints can lead to improved performance.
Nevertheless, the solution of some highly structured integer
programming problems has been improved by using aggre-
gated constraints (Kannan 1983).

Techniques of constraint aggregation often have the
associated problem of increasing the number of variables.
Such is the case of the aggregators derived by Bradley (1971)
or Padberg (1972), which require an additional variable for
each inequality constraint that is aggregated. Other
aggregators increase not only the number of variables but

TORRES-ROJO AND BRODIE 979

also the value of the coefficients in the aggregated constraint.
Such is the case of Padberg’s aggregator or the aggregator
derived by Fishburn and Kochenberg (1985). In some cases
these values grow very rapidly with the number of
aggregated constraints, which might represent a problem in
practical applications. For instance, the Padberg’s
aggregator requires coefficients of the order of six digits to
aggregate only 15 constraints.

Meneghin et al. (1988) considered the specific problem of
aggregation of adjacency constraints. They developed a pro-
cedure to reduce the number of adjacency constraints in
linear programming or integer programming formulation.
Their approach combines simple adjacency restrictions
(type 1 constraints) into multiple adjacency restrictions
(type 2 constraints) to form aggregated adjacency con-
straints. The procedure requires less than half the constraints
required by the conventional adjacency constraint
formulation.

We present a procedure to reduce the number of
adjacency constraints in a formulation of the harvest
scheduling problem that can be implemented easily into a
computer code. Our procedure is based on the concept of
penalties and a principle used in map coloring and graph
theory called the four-color theorem (Ringel 1959; Saaty and
Kainen 1977). The procedure is simple and yields aggregated
constraints with fewer variables per constraint than the ones
reported by Meneghin ef a/. (1988). In addition, our
approach also requires less than half the constraints required
by the conventional adjacency constraint formulation, and
in contrast with Meneghin’s algorithm, it does not need the
tedious two-step procedure of identifying type 1 and 2 con-
straints before constructing the aggregated constraint.

In the next section (section 2) we present our heuristic for
adjacency constraints aggregation and the rules to compute
the aggregators. In the third section some aggregators are
derived for an example problem. Section four describes the
basis of the aggregator. Finally the last section shows some
comparisons among our aggregator, the conventional pro-
cedure, and the algorithm proposed by Meneghin ef al.
(1988).

An heuristic for constraint aggregation

Our heuristic is based on recognizing the following obser-
vations of the adjacency constraints: (i) If we were able to
write an adjacency constraint per harvesting area (i.e., one
constraint that describes all the adjacency relations of the
reference harvesting area and all its adjacent areas), we
would have at most the number of adjcency constraints
equal to the number of harvesting areas. (ii) When we have
an adjacency constraint per harvesting area, some con-
straints are redundant. Consider that the ith area (a)) is sur-
rounded by areas already described with adjacency con-
straints. Then area g; does not need to be described by an
additional adjacency constraint, since its adjacency relation-
ships with its adjacent areas have already been described with
the corresponding surrounding areas.

The first observation suggests that if we are able to write
one adjacency constraint for each one of the N harvesting
areas, the number of adjacency constraints is V. The second
observation indicates that the number N of aggregated con-
straints can be reduced further.

Based on these observations, our heuristic consists of two
steps. The first step, procedure 1, consists of identifying

areas for which it is not necessary to write adjacency con-
straints, given that their surrounding areas describe their
adjacency relationships. Once we identify these areas, the
second step, procedure 2, consists of applying a set of rules
to write one adjacency constraint for each one of the areas
not identified in procedure 1.

Procedure 1 is simple and will be illustrated through an
example. Consider the pattern of harvesting areas depicted
in Fig. 1. Following this pattern we can form the adjacency
matrix (i.e., the matrix that shows us the adjacency rela-
tionships among all harvesting areas) shown in Table 1.
Recalling that each X in Table 1 represents an adjacency rela-
tion, let us call NR; the number of X’s in row /, and NC;
the number of X’s in column i, Thus for row 1, Fig. 2,
NR,; = 3, and for column 1, NC, = 3. If for the ith row
NR; = NC; then area i can be identified. Such identifica-
tion indicates that the adjacency relations of area 7 can also
be described by other areas. Hence it is redundant to write
an adjacency constraint for that area. If area i/ can be iden-
tified in this way, then row i is deleted.

Procedure 1 consists of performing this identification of
areas. Bvery time an area is identified its corresponding row
in the adjacency matrix is deleted, and the procedure con-
tinues until we check all the areas. For instance, for the
adjacency matrix depicted in Fig. 2, NR; = NC; = 3, so
row 1 might be eliminated and rows 2-4 will still keep the
adjacency relations of area I and areas 2-4. If row 1 is elim-
inated (i.e., area 1 has been identified), NR, = 4 and
NC, = 3, so row 2 cannot be eliminated. And since
NR; = NR; = 4 and NC; = NC,; = 3, neither row 3 nor
row 4 can be eliminated. However, NRs; = NC; = 5.
Therefore, row 5 can be eliminated. Following the same pat-
tern, row 6 cannot be eliminated but row 7 can. Thus, rows
8 and 9 cannot be eliminated.

Note that to obtain the relationships NC, = NC; =
NC, = 3, we considered row 5, but this was before
deleting it. The basic idea of this procedure is to identify
areas that can be described by surrounding areas that have
not been identified.

At the end of procedure 1 and considering the adjacency
matrix depicted in Table 1, we identified areas 1, 5, and 7
as areas for which we do not need to write adjacency
constraints.

Procedure 2 consists of writing one adjacency constraint
for each one of the harvesting areas not identified in pro-
cedure 1. Each one of these constraints should include all
the adjacency relations between the harvesting area and its
surrounding areas. To write such a constraint can be an easy
task if for the ith area all its adjacent areas are also adjacent
to each other. For instance, consider Fig. 1. An adjacency
constraint for area 9 that describes all the adjacency relation-
ships between area 9 and its surrounding area is

11 X5+ Xz + Xo =1, X; € {0, 1}
where

(1 if area i is harvested
X 0 otherwise

which is called a triplet. Figure 2 shows three spatial patterns
for which writing one adjacency constraint per harvesting
area is simple. These patterns were defined by Meneghin
et al. (1988) as type 1 inequalities. Consider Fig. 2, pattern a.
To write an adjacency constraint for area 1, we have a pair:

X+ X, =1

980 CAN. J. FOR. RES. VOL. 20, 1990

~

§

|

]
i

¢}
o

Fi1G. 1. Example forest with nine harvesting areas.

(a] [b] (e]

> G

FIG. 2. Three different patterns where it is possible to write
type 1 constraints.

To write a constraint for the same arca 1 under pattern b
we have a triplet:

X+ X + X3 =1

and for writing a constraint for area 1 under pattern ¢ we
have a quadruplet: :
X i+ X+ X3+ X1

It turns out that all the type 1 inequalities described by
Meneghin et al. (1988) represent an adjacency constraint for
a given area with all its adjacency relationships considered
if, and only if, all the areas in the constraint are the total
number of areas adjacent to the area for which we are
writing the constraint. However in most of the cases, not
all the areas adjacent to a given harvesting area are adjacent
to each other. Moreover, it is very unlikely that a type 1
inequality considers all the adjacent areas to a reference areca
unless it is a quadruplet, such as area 1 in pattern ¢ (Fig. 2).
For cases where type 1 inequalities do not work, our pro-
cedure consists of weighting the coefficients of the areas
adjacent to the area for which we are writing the constraint.
Consider again the pattern depicted in Fig. 1. If we want
to write an adjacency constraint for area 1, the constraint

2] X\ +X+X+ X,=<1

is not valid given that areas 2 and 4 are not adjacent to each
other, and this constraint [2] does not allow the feasible com-
bination of harvesting areas 2 and 4 in the same period.
However, the constraint

3] 5X, +3X, + 4X; + 2X, = 5

keeps the desired adjacency relations and considers all the
areas adjacent to area 1. Constraint [3] was partially con-
structed following the idea of weighting the coefficients of
each of the harvesting areas that violate other constraints.
These weights will be called penalties because of the way
our procedure estimates them. The weighting (penalization)
procedure is simple and better understood through an
example. Hence, next we will define some notation and the

TABLE 1. Adjacency matrix for pattern in Fig. 1

Adjacent areas

Reference

area 1 2 3 4 5 6 7 8 9
1 X X X
2 X X X X
3 X X X X
4 X X X X
5 X X X X X
6 X X
7 X X X
8 X X X
9 X X

rules of the procedure, and then we will use those rules in

an example problem.

We define reference area as the area for which we are
writing the adjacency constraint. If only one additional adja-
cent area to the reference area is considered in the aggregated
constraint, we say we have a first-level aggregation. If two
adjacent areas are considered in the aggregated constraint,
we have a second-level aggregation, and so on. So, the
number of adjacent areas (NA) to the reference area equals
the level of aggregation. If in any level of aggregation an
area is adjacent only to the reference area and it is not adja-
cent to any of the areas included in the aggregated con-
straint, such an area is called colorable, otherwise it is called
noncolorable.

Procedure 2 is sequential, and it computes the final
weights of the aggregated constraints. The strategy follows
a penalization procedure whose rules are as follows:

(1) The right-hand side value (RHS) for any aggregated con-
straint equals the coefficient of the reference area in the
constraint.

(2) Each penalty has a value of 1, i.e., the value of the
penalized coefficient increases by 1.

(3) Each variable (harvesting area) that enters into the
aggregated constraint adds a penalty to the reference
area if the following is true: (@) It is the last variable
to be added into the constraint. As a general rule, at
most four noncolorable areas and all colorable areas will
be included in each constraint. Note that the number
of noncolorable areas can be less than four. () It is
not the last variable, and before it enters, NA = RHS
(i.e., the number of adjacent areas to the reference area
is greater than or equal to the current value of the RHS).
Recall that the RHS is incremented as the coefficient
of the reference area is incremented.

(4) If the entering variable has an adjacency relation with
any of the areas already considered in the aggregated
constraint (i.e., it is a noncolorable area), a penalty is
added to the entering variable for each one of its adjacent
areas (variables) already in the aggregated constraint,
but only one penalty is added to the reference area. In
addition, one penalty is added to each of the areas adja-
cent to the area just entered. For instance, according
to this rule, if the entering variable is adjacent to two
areas already in the constraint, the entering variable is
penalized twice, its adjacent areas (2) are penalized once,
and the reference area is penalized once.

(5) If the areas adjacent to the area just entered have an
adjacency relation with any other area already in the

TORRES-ROJO AND BRODIE 981

constraint, we have a transitivity effect. Such an area
is penalized again, and a penalty is added to its adjacent
area(s). This procedure is repeated for all adjacent areas.
Each time a transitivity effect occurs a penalty is added
to the reference area. For instance, if an entering
variable, say area A, has two adjacent areas already in
the constraint, say areas B and C, and in addition area C
is adjacent to area D, which is also already in the con-
straint, then we have the transitivity effect:
A—-~C—-D

Then area C is penalized again, and its adjacent area
D and the reference area are also penalized.

(6) If the constraint already has five areas (variables)
including the reference area and there exists an area(s)
adjacent only to the reference area (colorable area), such
an area(s) enters the constraint without penalty, and the
reference area is penalized just once.

(7) The set of areas (variables) has to be unique to each con-
straint. Otherwise the constraint is considered redundant
and is dropped. Likewise, the set of areas in a given con-
straint cannot be a subset in any other constraint.

Example

Consider that we want to write aggregated adjacency con-
straints for the pattern depicted in Fig. 1. The first step is
to find the areas whose adjacency relations can be expressed
by surrounding areas. Hence, we apply procedure 1 to iden-
tify such-areas. From the last section we know that we do
not need to write adjacency constraints for areas 1, 5, and
7. We then apply the rules of procedure 2 to write aggregated
adjacency constraints for areas 2, 3, 4, 6, 8, and 9. Assume
we want to compute an aggregated constraint for area 9 in
Fig. 1. This area is adjacent to areas 7 and 8, but the two
adjacent areas are adjacent to each other. Starting with the
first level of aggregation we have

4 X+ X =1

For the second level of aggregation we have to penalize
both areas, and the penalty is as follows. When Xj enters,
it is immediately penalized (rule 4) because it has an adjacent
area in constraint [4], namely area 7 (X5). Likewise, follow-
ing rule 4, X; is penalized because of its adjacency relation
with area 8. Following the same rule, a penalty is added to
the reference area X,. In addition, following rule 3a, Xj is
penalized again because Xj is the last variable to enter the
aggregated constraint. Thus, Xy is penalized twice; the first
time because X enters (rule 34) and the second time
because of the adjacency relations between areas 7 and 8.
Figure 3 shows this penalization procedure, which yields the
following aggregated constraint:

[5] 2X; + 2Xg + 3Xy <3
Observe that in this case the constraint
X+ Xy + Xg =1

has the same effect and has smaller coefficients than ours.
It turns out that if all the adjacent areas to a reference area
form a type 1 constraint, i.e., pairs, triplets, and quadruplets
(Meneghin ef al. 1988), these constraints always have smaller
coefficients than our aggregators. In these cases such
aggregators might be used instead of the ones yielded
through this heuristic.

Suppose that we want to write an adjacency constraint
for area 1 (from procedure 1 we know that we do not need

+1 by rule 4

F1G. 3. Transitivity effect to compute the penalties.

to write an adjacency constraint for this area; however, we
will use it to illustrate the penalization procedure). We start
with the first aggregation level:

X+ X, =1

By adding X3 and the same steps we followed earlier, the
second aggregation level yields

[6] 3X; + 2X, + 2X; < 3

Note that in this case the second penalty to the reference
area X; followed rule 3b not rule 3a, as did the last exam-
ple. The third aggregation level has a transitivity effect that
is described in two steps. First, following rule 4 we enter
X, with a penalty because of its adjacency relation with Xj;.
Under the same rule, X3 and the reference area are also
penalized. In addition, following rule 3a the reference area
is penalized again because X, is the last entering variable.
So, at the end of the first step we have

SX, + 2X, + 3X; +2X, <5

For the second step we observe that area 3 is adjacent to
area 2 (the transitivity effect), and area 2 is already in the
constraint. Hence, we penalize area 3 again and adjacent
area 2, adding the corresponding penalty to the reference
area (rule 5). Thus the final aggregator for area 1 is

[71 6X, + 3X, + 4X; + 2X, < 6

Notice that this aggregator violates the infeasible com-
bination of harvesting areas 3 and 4 in the same period.
However, this deficiency is corrected by other constraints.
To prove it let us compute the aggregator for area 4. Fol-
lowing the procedure for area 1, the second level of aggrega-
tion for the aggregator of area 4 yields

8] 2X, + 2X; + 3X, <3

For the third aggregation level we have the transitive
effect, which is described in two steps. In the first step Xs
enters into constraint [8]. It is penalized immediately because
it has an adjacent area (X3). Hence X; and the reference
area are penalized (rule 4), yielding

9] 2X, + 3X; + 4X, + 2Xs < 4

Note that at this step, X, (reference area) is penalized
just once (rule 4) since X is not the last area adjacent to
enter into the constraint. In addition, before X enters,
RHS > NA. Hence, no one of the requirements of rule 3
is met to penalize the reference area again. In the second
step, we observe that there is an adjacency relation between
X, and X; (the transitive effect). Hence X; has to be
penalized again, and as a consequence the reference area
and X, have to be penalized too, yielding the final
aggregator for the third level of aggregation:

[10] 3X, + 4X; + 5X, + 2Xs < 5

Finally we enter area 7 (X5) into constraint [10]. It is the
last entering variable (area), so the reference area is penalized

982 CAN. J. FOR. RES. VOL. 20, 1990

TABLE 2. Aggregated constraints for each area in Fig. 1,
considering four noncolorable areas per constraint

Reference
area Aggregated constraint
1 6X, +3X, +4X; + 2X, <6
2% 4X, + 9X, + 6X5 + 4X; + 22X, < 9
3* 6X, + 5X, + 9X; +4X, + 3X;, <9
4* 3, 44X, + 6X, +2X; + X; <6
5 5X, + 6X; + 3X, + 10X + 2Xs + X3 = 10
6* 2X, + 2Xs + 3X, <3
7 X4+ 4X; + 22X + 2Xg < 4
8* Xs +2X; +4X; + 2X, < 4
O* 2X; + 2X5 + 3Xy < 3

*Constraints were needed to explain all adjacency relations in the pattern shown
in Fig. 1.

once; and because X5 has no adjacency relation with other
areas in constraint [10] but the reference area (i.e., it is a
colorable area), it enters without penalty, yielding the final
aggregator:

[11] 3X, + 4X; + 6Xy + 2Xs + X, < 6

Note that this aggregated constraint violates the require-
ment that X5 and X cannot be harvested in the same
period. However, it avoids the violation incurred in the
aggregated constraint [7}, where X5 and X, were allowed
to be harvested in the same period.

The aggregator for area 8 can be obtained as follows.
Applying the same steps as in the last aggregator, the second
aggregation level yields:

2X; + 3Xg + 2Xy = 3

For the third aggregation level we enter X5 without a
penalty (it is colorable), and given that it is the last entering
variable, the reference area is also penalized (rule 3a),
yielding the final aggregator for area 8:

[12] X5 + 2X; + 4X3 + 2X, < 4

Finally we describe how to compute the aggregator for
area 3. For this area the second level of aggregation yields

[13] 2X; + 2X, + 3X; <3

For the third aggregation level we enter X, Variable X,
enters into constraint [13] with a penalty because of its
adjacency relation with X;. Hence, following rule 4, X,
and the reference area are penalized. However, X is adja-
cent to X, (which is already in constraint [13]). Hence by
the transitivity effect, X; has to be penalized again, and by
rule 5, X, and the reference area are also penalized,
yielding
[14] 4X, + 3X, + 5X5 + 2X, =<5

The fourth level of aggregation has a transitivity effect
that is described in two steps. In the first step, X5 enters
with a double penalty because of its adjacency relations with
areas 2 and 4, which are already in constraint [14]. At this
step the reference area is penalized twice, one penalty
because X enters and it is the last entering variable (rule
3a) and the second penalty (rule 4) because X5 has adjacent
areas in constraint [14]. Likewise, following rule 4, the areas
adjacent to X, namely 2 and 4, are also penalized. Thus
at this step, the aggregated constraint is

[15] 4X, + 4X, + 7X; + 3X, + 3Xs < 7

Since X, was penalized and it is adjacent to X, there is
a transitivity effect. Thus, following rule 5, X;, X}, and the
reference area are penalized. Likewise, since X, was
penalized and it is adjacent to X,, there is another tran-
sitivity effect, and by rule 5, X,, X}, and the reference area
are penalized again, yielding the final aggregator:

[16] 6X, + 5X, + 9X; + 4X, + 3X; < 9

As the reader can verify, the violation incurred in con-
straint [11], which permits the harvest of areas 3 and 5 in
the same period, has been corrected by constraint [16].
Although constraint [16] permits the harvest of areas 2 and
5, the reader can verify that the constraint for area 2 cor-
rects this infeasible combination. Table 2 shows the
aggregated constraints for each one of the areas in Fig. 1.
The constraints marked with an asterisk correspond to
required constraints, and the ones without an asterik corre-
spond to the redundant constraints identified in procedure 1.

Thus, for describing the adjacency relations of the pattern
depicted in Fig. 1, we need just the six constraints marked
with an asterisk in Table 2, instead of the 15 constraints
required with the conventional procedure. Something impor-
tant to notice in procedure 2 is that the order in which the
adjacent areas are picked to enter the constraint, or which
adjacent areas are picked (if there are more than four adja-
cent areas to the reference area), does not affect the final
adjacency relations obtained with the procedure. However,
for some situations, constructed patterns following our rules
could lead to a set of constraints that violates some of the
adjacency relations. To avoid this possibility, we include as
another requirement for the computation of aggregated con-
straints mainténance of the order in the selection of the
variables each time they enter the aggregated constraints;
i.e., if six possible variables can enter the constraint, first
enter area 1, then area 2, and so on.

Basis of the heuristic to write aggregated adjacency
constraints

Procedure 1 is a systematic mechanism that identifies
harvesting areas whose adjacency relationships can be
defined by their surrounding areas. Following the pattern
in Fig. 1, the reader can verify that areas 1, 5, and 7 are
completely surrounded by areas for which we have to write
adjacency constraints. For instance, if the aggregated con-
straints for areas 2-4 consider area 1, then the constraint
for area 1 is not necessary since its adjacency relations with
its surrounding areas are implicit in the constraints for areas
2-4, In other words, the number of areas adjacent to area 1
equals the number of areas adjacent to area 1 left (uniden-
tified) to describe the adjacency relationships of that area.

Procedure 1 can be interpreted in the following way. For
any adjacency matrix, let the number of X’s in row i (NR))
represent the areas adjacent to the reference area /, and let
the number of X’s in column i (NC)) represent the number
of areas adjacent to area i left to describe the adjacency rela-
tions between area i and its surrounding areas. Then we can
avoid writing the constraint for area / in NR; = NC; i.e.,
the number of areas adjacent to area i equals the number
of areas left to describe the adjacency relations of area /.
As can be observed, procedure 1 is just a mechanized way
to identify areas surrounded by areas not identified.

TORRES-ROJO AND BRODIE 983

TABLE 3. Aggregated constraints for each area in
Fig. 4, considering one noncolorable area per

constraint
Reference

area Aggregated constraint
1 2X, + X, + X, =2

2 Xi+3X, + X, + X5=3
3 X, +2X; + X, < 2

4 X +3X, + X+ X, <3
5 X, + Xy +4X + Xo + Xy < 4
6 X3+ X+ 3Xs + Xy =3
7 X, +2X; + Xy =2

8 Xs + X, +3X, + Xg =<3
9 X+ Xz + 2X, =2

In section 2 we described the rules of procedure 2 to com-
pute aggregated adjacency constraints when the reference
area has up to four adjacent areas (recall that colorable areas
are not considered in the counting). However, it is very likely
that the reference area has more than four noncolorable
adjacent areas. We can apply the same rules when the ref-
erence area has more than four (noncolorable) adjacent
areas. The problem with this approach is that the procedure
becomes more complex if those additional areas are adjacent
to areas already considered in the aggregated constraint. In
this case the coefficients start to increase rapidly, basically
because of the transitivity effect of the areas already in the
constraint.

If we consider that all the areas adjacent to a given refer-
ence area might not be adjacent to each other, then some
areas in the aggregated constraint do not appear in the
aggregated constraint of other areas. For instance, following
the pattern in Fig. 1, the aggregated constraint for area 1
includes area 4 (inequality 7). However, any adjacency con-
straint for area 2 (which is included in inequality 7) does not
include area 4; i.e., we can harvest areas 2 and 4 in the same
period, or seen as a chromatic scheduling problem, we say
that we can color areas 2 and 4 with the same color in the
map represented by Fig. 1. Thus the problem of deciding
how many areas we should include in the aggregated adja-
cency constraint is related to a chromatic scheduling prob-
lem. Chromatic scheduling is the area of graph theory related
to the scheduling of discrete events that span the same period
of time, where some events can occur simultaneously but
others cannot (Wood 1969). Gross and Dykstra (1988) used
the principles of chromatic scheduling to investigate the min-
imum number of evenly spaced harvest entries needed to
bring a forest into area regulation. We will use these prin-
ciples to determine the minimum number of (noncolorable)
areas adjacent to a reference area that we should include
in writing an adjacency constraint for a reference area.

In graph theory the map coloring problem consists of find-
ing the minimum number of colors sufficient for coloring
a planar map such that two contiguous areas do not have
the same color. This number of colors is called the chromatic
number. The chromatic number can be a minimum of two
for special map patterns or one if the map consists only of
one area. The chromatic number is related to our problem,
since if we know the chromatic number of the map that
represents the areas of our harvest scheduling problem, such
a number reduced by one, should be the minimum number

of adjacent areas (noncolorables) that we should include
(whenever it is possible) in each one of the adjacency con-
straints. It is important to note that this minimum number
of adjacent areas considers only the noncolorable areas. Col-
orable areas are always included in writing the aggregated
adjacency constraint for a given reference area.

To clarify the statement that the chromatic number of the
pattern reduced by one determines the minimum number
of noncolorable areas we should include in the aggregated
constraint, we will use two examples. First, consider a pat-
tern of harvesting areas similar to a checkerboard (Fig. 1).
This pattern has a chromatic number of 2,2 which means
that only two colors are sufficient to color each area and
no two adjacent areas are the same color. Applied to our
problem, we should be able to write adjacency constraints
for each area such that in every aggregated constraint all
the areas adjacent to the reference area are not adjacent to
each other, i.e., all of them are colorable areas.

Following the rules of procedure 2, we can construct the
aggregated adjacency constraints for each of the areas in
this example. These aggregated adjacency constraints are
shown in Table 3. In all cases we did not stop adding areas
to the aggregated constraint once two areas were already
in the aggregated constraint (recall that the chromatic
number of this example is 2) since the additional areas are
adjacent only to the reference area (colorable) and not to
the other areas already in the aggregated constraint (recall
rule 6). In the hypothetical case that one candidate area to
enter the aggregated constraint was adjacent to the reference
area and any area already in the constraint (considering a
map with chromatic number of 2), we could ignore that can-
didate area because if we include it we would have two non-
colorable areas in the constraint. Such a number of non-
colorable areas is more than the minimum required for a
pattern with a chromatic number of 2.

A second example might help clarify this idea. For our
example problem in Fig. 1, the reader can easily verify that
the chromatic number of the pattern is 3 (i.e., only three
colors are needed to color the map and no two adjacent areas
will have the same color). Thus, given the chromatic number
of 3, we should be able to construct adjacency constraints
for this example such that once an entering area is adjacent
not only to the reference area but also to any other area
already in the constraint (i.e., a noncolorable area), we stop
entering noncolorable areas and just enter areas adjacent
exclusively to the reference area (colorables). When we enter
the first noncolorable area in the constraint, we automatically
have two noncolorable areas in the aggregated constraint;
and for the pattern with a chromatic number of 3, this is
the minimum required.

Following the rules of procedure 2, we computed the
adjacency constraints for each area in Fig. 1 and stopped
the addition of noncolorable areas once the first non-
colorable area is added to the constraint. Table 4 shows these
constraints. Observe that there are no constraints for areas
6 and 9 since its adjacency relations are described by other
constraints and the inclusion of these constraints would
imply a violation of rule 7 (be redundant). Likewise, observe
that for area 2 we could write a constraint similar to that

2Only the infinite checkerboard has a chromatic number of 2
since technically the area around the checkerboard has to have
another color.

984 CAN. J. FOR. RES. VOL. 20, 1990

of area 1. However, this constraint would violate rule 7. Also
observe that for area 1 we did not include the adjacent
area 4, for area 2 we did not include the adjacent areas 1
and 6, and for area 3 we did not include the adjacent areas 2
and 5. In this way many other adjacent areas were not
included in other constraints. The reason to avoid these areas
in the pattern with a chromatic number of 3 is because we
need just two noncolorable areas in each aggregated con-
straint, regardless if the reference area has more than two
noncolorable adjacent areas. In the constraint for area 7 we
included a fourth area, namely area 4, given that this area
is adjacent only to reference area 7 but not to areas 8 and
9 (rule 6). In other words, area 4 can have the same color
as areas 8 or 9. The same idea is used to include area 5 in
the constraint for area 8.

Gross and Dykstra (1988) showed the exaggerated comput-
ing time required to find chromatic numbers under different
constraints. In general, the chromatic number is difficult
to find for many patterns, and it would not be practical to
compute it every time we want to write aggregated constraints
for a specific problem. Hence we will rely on the principles
of graph theory to generalize our heuristic without having
to compute the chromatic number of each pattern. One prin-
ciple of graph theory called the four-color theorem states
that ‘“four colors are sufficient to color any map drawn in
a plane or a sphere so that no two regions with a common
boundary line are colored with the same color’” (Ringel 1959).
Based on this theorem we can state that at least three areas
adjacent (recall that only noncolorable areas are considered
in the counting) to the reference area would be necessary
to identify the adjacency relations of each reference area.

Observe what could happen if we use the chromatic
number to define the minimum number of noncolorable
areas in an aggregated constraint. In the case of a chromatic
number of 2 (Fig. 4), if we do not include any of the con-
straints (see Table 3), all the adjacency relations are kept.
Thus, using procedure 1 we can eliminate constraints 1, 3, 5,
7, and 9, and the adjacency relations are kept. However,
consider Table 4. In this case the aggregated adjacency con-
straints were computed considering just two noncolorable
areas in each constraint, i.e., the number of colors (coloring
number) corresponded to the chromatic number. If we do
not include constraint 1 we violate the restriction that areas
1 and 2 are adjcent to each other. Hence we cannot eliminate
arbitrarily any constraint in this case. Consider again the
pattern in Fig. 1. If instead of using the chromatic number
3 we assume the pattern is five colorable, i.e., we will stop
entering variables in the constraint once there are four non-
colorable areas in the constraint, then we end up with the
constraints shown in Table 4. Note that the rules of pro-
cedure 2 assume the pattern is five colorable. In this case,
as the reader can verify in Table 2, we can eliminate arbitrarily
any constraint, and the adjacency relations are kept.

By increasing the number of noncolorable areas in the
aggregated constraint beyond the chromatic number, we
have a better identification of the adjacency relations, which
makes it feasibe to apply procedure 1 and eliminate some
constraints without incurring any violations of adjacency
relationships. Therefore, assuming the validity of the four-
color theorem, we would have a better identification of the
adjacency relations for each reference area if we assume the
patterns are five colorable. In this way, when we apply pro-
cedure 1 in complicated patterns that require four colors,

we reduce the possibility of deleting constraints needed to
represent the required adjacency restrictions. Notice that if
we do not apply procedure 1, three noncolorable areas per
constraint are sufficicnt in cach aggregated constraint (when
the reference area has more than three noncolorable areas).
However, if we apply procedure 1, there is a possibility of
violating some adjacency relationships. Hence, we recom-
mend the use of four noncolorable areas when possible to
write the aggregated adjacency constraints.

To identify any difference in the number of aggregated
constraints computed using different numbers of non-
colorable areas considered in each aggregated adjacency con-
straint, we simulated 10 forests varying from 15 to 60 units.
The examples were completely different, and we tried to
simulate arrangements of up to 12 adjacent areas to only
1 area, We used 4, 5, and 6 as coloring numbers, i.e., 3, 4,
and 5 as number of noncolorable areas included in each
aggregated constraint. In all the examples procedure 1 was
performed to eliminate redundant constraints. Hence, the
initial number of constraints was the same for each example
regardless of the coloring number, In all cases the derived
adjacency constraints were able to identify the optimal solu-
tion without violating any adjacency relation. So it was not
necessary to increase the number of constraints when small
coloring numbers were used.

From these results and acting conservatively, we recom-
mend using a coloring number of 5 to compute the aggregated
constraints, since our objective is to reduce the number of
constraints to a number less than the number of harvesting
areas. By using a coloring number of 4 there is a possibility
of violating adjacency relations for complicated patterns.
By using larger coloring numbers we reduce that possibility,
although we increase the number of variables per constraint
and the size of the coefficients.

Note that the assumption that the pattern of harvest units
is five colorable works correctly only if the exclusion period
(the minimum age difference, in years, between adjacent
stands) is equal to the return period (the number of years
between any two cutting operations on a particular map).
Nevertheless, these two numbers might differ. In such cases,
the aggregated adjacency constraints obtained through this
heuristic might violate some adjacency relations since the
number to use in place of the chromatic number is more
complicated than simply using 5. Gross (1989) has derived
the number to use in place of 5 for various ratios of exclusion
period to return period. These numbers could be used to
set the minimum number of noncolorable areas to include
in the constraint.

Another questionable statement about the rules of pro-
cedure 2 is the existence of a rationale for the penalty system.
To give an idea of this rationale, assume a system of equa-
tions of the form

m
j=1

i=1,2,..,mmnz=2 X;€{0, 1}

where n is the number of equalities and m is the number
of variables. The common aggregator for this sytem of equa-
tions is given by

[17] Z E aX; = E a;
=1

i=1 j=1

TORRES-ROJO AND BRODIE 985

1 2 3
4 5 6
7 8 9

FiG. 4. Checkerboard pattern of an example forest.

where the a;, ..., a, is an increasing sequence of positive
integers that satisfy

a>m— Da +, ..., +a_pfori=2

However, this aggregator yields values for g; that increase
rapidly (Fishburn and Hochenberg 1985). Our aggregator
is based on the idea that we can form aggregators less restric-
tive than aggregator [17], since the adjacency constraints are
inequalities.

Consider the pattern depicted in Fig. 1. All the conven-
tional adjacency constraints that include area 1 are

18] X; + X, =1

[19] X, + X3 =<1

200 X, + X; =1

Assuming g; = 1 and applying the aggregator in [17], a
possible aggregator for constraints [18] and [20] is given by
[21] 2X1 + X2 + X4 <2

which works because areas 2 and 4 are not adjacent to each
other. Now consider if we attempt to aggregate constraints

[197 and [20]. Since area 3 is adjacent to areas 2 and 4, we
need to consider the set of constraints

X, + X531
X3+ X, =1

Then, our penalty procedure tries to consider the set of con-
straints [22], keeping the increasing sequence of coefficients
whenever areas adjacent to areas already considered in the
aggregated constraint are added. Hence the penalties keep
the increasing sequence of coefficients for the noncolorable
areas.

[22]

Comparisons

To compare the performance of our algorithm, we for-
mulated adjacency constraints for five examples by using
two other algorithms. The first algorithm was the conven-
tional formulation that consists of writing pair-wise adjacent
relationships in each constraint such that only two areas are
involved in every adjacency constraint. For instance, fol-
lowing this formulation and the pattern depicted in Fig. 4,
the constraints that involve area 1 are

X+ X =<1
X+ Xy <1
Thus for the pattern in Fig. 4 and following the conven-
tional formulation, we need 12 constraints to express all the
adjacency relationships.
The second algorithm was the one described by Meneghin
et al. (1988). This algorithm consists of three basic steps:

(i) Identify all type 1 constraints. This step is basically to
identify all the pairs, triplets, or quadruplets. (ii) Identify

TABLE 4. Aggregated constraints for each
area in Fig. 1, considering two noncolorable
areas per constraint

Reference

area Aggregated constraint

1 3X, + 2X, + 2X; =3

2 3X, + 2X; + 2X5 =3

3 2X, + 3X; + 2X, =3

4 2X; + 3X, + 22X, <3

5 2X, + 3Xs + 2X, < 3

7 Xy +4X, + 2X; + 2X, < 4
8 Xs + 2X; + 4X; + 2Xy < 4

all type 2 constraints. This step consists of applying some
rules to identify groups of pairs (triplets or quadruplets) of
type 1 constraints for each type-1 constraint identified in
the first step. (iii)} According to another set of rules, select
the best set of type 2 constraints and following an additional
set of rules, write the adjacency constraints for the selected
combinations of type 2 constraints. The procedure is almost
tedious since the process of identifying type 1 constraints
and all possible combinations of these constraints to form
a type 2 constraint requires some combinatorial work. For
the pattern depicted in Fig. 4 and following this procedure
to formulate adjacency constraints, we need just four con-
straints to describe all the adjacency relations. Those con-
straints correspond to inequalities 2, 4, 6, and 8 in Table 3.

In our example forests, each forest varied in complexity
not only in the number of stands but also in the adjacency
relations. For each example forest, we formulated adjacency
constraints using the two algorithms described earlier and
our heuristic. The number of constraints used in each case
was then counted. Table 5 shows these results. As can be
observed, our procedure requires about a third of the
number of constraints required by the traditional procedure
and about the same number of constraints as required by
Meneghin’s algorithm. A close look at Table 5 could lead
to the misinterpretation that Meneghin’s algorithm performs
better as we increase the number of units in the forest. How-
ever, this is not true. Such differences depend basically on
the structure of the forest. For structures similar or close
to a checkerboard (small chromatic number) and where the
number of adjacency relations per area is small, our algo-
rithm performs better. It requires fewer constraints and
smaller coefficients for the aggregated constraints. However,
when the number of adjacency relations increases and espe-
cially in those cases where it is possible to form a large
number of quadruplets (not very common in real forest
structures), Meneghin’s algorithm is better since it yields
fewer constraints than ours and smaller coefficients in each
constraint. In these cases, the difference in the number of
constraints was about 20% of the number of constraints
required by our algorithm. Observe that in such situations
Meneghin’s algorithm uses its property of grouping many
adjacency relations for several units in one single constraint.
However, in patterns where there are few quadruplets, this
property is not exploited. In most of the cases we obtained
fewer variables per constraint than Meneghin’s constraints,
although the coefficients obtained with our heuristic were
often larger than those of Meneghin’s algorithm. We did
not write any computer code to compute the adjacency con-

986 CAN. J. FOR. RES. VOL. 20, 1990

TABLE 5. Number of adjacency constraints required for three
different algorithms in some example problems

No. of Conventional Meneghin’s Proposed

units formulation formulation heuristic
15 32 10 9
20 37 13 12
30 71 22 22
35 73 23 25
40 : 90 26 31

straints from the adjacency matrix for any of the algorithms.
However, it is evident that the time required to formulate
adjacency constraints by our procedure is not shorter than
that of the conventional procedure, but it is if compared
to Meneghin’s algorithm, given that our procedure does not
involve any combinatorial selection.

Another important feature to note in our algorithm is the
ease with which it is mechanically generated from the
adjacency matrix. This characteristic is highly evident for
procedure 1, but not so much for procedure 2. However,
if we consider that there exists a small number of combina-
tions of values of coefficients for the four noncolorable areas
in each constraint (when the reference area has at least four
noncolorable areas), then we can store those combinations
and select one any time we enter a variable in the aggregated
constraint. Hence, procedure 2 can also be mechanically
generated.

Reduction of adjacency constraints in area-based forest
planning is important not only to fit large formulations into
standard linear programming or integer programming solu-
tion packages but also to fit large problems to some
heuristics developed to provide good feasible solutions to
the area-based harvest scheduling problem. For instance, our
procedure can be applied to the heuristic developed by
Nelson et al. (1988) or the one developed by Sessions (1988)
to reduce the size of the adjacency matrix that is stored, since
this matrix can be reduced if we use aggregated constraints.
Another important application of aggregated constraints is
our attempt to obtain approximate optimal solutions to the
area-based problem through relaxation, namely surrogate
relaxation and Lagrangean relaxation. In these cases, the
smaller the number of constraints the faster the computa-
tion of the multipliers.

In summary, we have shown that the reduction of
adjacency constrainis is an important tool in area-based
forest planning. It can be applied to heuristics or optimal
solution algorithms to reduce storage limitations or to reduce
solution time for highly structured integer programming

problems (Kannan 1983), which are the main problems in
area-based formulations of the harvest scheduling problem.

Acknowledgement

Research was partially supported by the Forestry Research
Laboratory, Oregon State University, and the Coastal
Oregon Productivity Enhancement Program.

AppEL, K.I., and HAKEN, W. 1976. Every planar map is four
colorable. Bull. Am. Math, Soc. 82: 711-712.

BRADLEY, G.H. 1971. Transformation of integer programs to
knapsack problems. Discrete Math. 1(1): 29-45.

FisHBURN, P.C., and KOCHENBERG, G.A. 1985. Aggregating
assignment constraints. Nav. Res. Log. 32(4): 653-663.

Gross, T.E. 1989. Use of graph theory to analyze constraints on
the juxtaposition of timber stands. M.S. thesis, School of
Forestry, Norther Arizona University, Flagstaff, AR.

Gross, T.E., and DYKSTRA, D.P. 1988. Harvest scheduling with
nonadjacency constraints. /n Proceedings, Society of American
Foresters National Convention, 16-19 Oct. 1988, Washington,
DC. Society of American Foresters, Washington, DC.
pp. 310-315.

KANNAN, R. 1983. Polynomial time aggregation of integer
programming problems. J. Assoc. Comput. Mach. 30(1):
133-145.

MENEGHIN, B.J., KIrRBY, M.W., and JONES, J.G. 1988. An algo-
rithm for writing adjacency constraints efficiently in linear
programming models. /n The 1988 Symposium on Systems Anal-
ysis in Forest Resources, Mar. 29-Apr. 1, 1988. Edited by
B. Kent and L. Davis. USDA For. Serv. Rocky Mt. For. Range
Exp. Stn. Gen. Tech Rep. RM-161. pp. 46-53.

NELSON, J., BRODIE, J.D., and SESSIONS, J. 1988. Integrating
short term spatially feasible harvest plans with long term harvest
schedules using Monte-Carlo integer programming and linear
programming. In The 1988 Symposium on Systems Analysis in
Forest Resources. Edited by B. Kent and L. Davis. USDA For.
Serv. Rocky Mt. For. Range Exp. Stn. Gen. Tech. Rep. RM-161.
pp. 224-229,

ONEYKWELU, D.C. 1983. Computational viability of a constraint
aggregation scheme for integer programming problems. Oper.
Res. 31(3): 795-801.

PADBERG, M.W. 1972. Equivalent knapsack-type formulations of
bounded integer linear programs: an alternative approach. Nav.
Res. Log. 19(4): 699-708.

RINGEL, G. 1959. Farbungsprobleme auf Fldchen und Graphen.
Mathematische Monographien Numer 2. VEB Deutscher Verlag
der Wissenschaften, Berlin.

Saaty, T.L., and KAINEN, P.C. 1977, The four-color problem.
McGraw-Hill Inc., Maidenhead, Great Britain.

SESSIONS, J. 1988. User’s guide for Scheduling and Network Anal-
ysis Program (SNAP). [Draft] USDA Forest Service, Division
of Timber Management, Portland, OR.

Woob, D.C. 1969. A technique for colouring a graph applicable
to large scale timetabling problems. Comp. J. 12: 317-319.

