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Abstract:  Kernel methods for estimating home range are being used increasingly in wildlife research, but
the effect of sample size on their accuracy is not known. We used computer simulations of 10-200 points/
home range and compared accuracy of home range estimates produced by fixed and adaptive kernels with the
reference (REF) and least-squares cross-validation (LSCV) methods for determining the amount of smoothing.
Simulated home ranges varied from simple to complex shapes created by mixing bivariate normal distributions.
We used the size of the 95% home range area and the relative mean squared error of the surface fit to assess
the accuracy of the kernel home range estimates. For both measures, the bias and variance approached an
asymptote at about 50 observations/home range. The fixed kernel with smoothing selected by LSCV provided
the least-biased estimates of the 95% home range area. All kernel methods produced similar surface fit for
most simulations, but the fixed kernel with LSCV had the lowest frequency and magnitude of very poor
estimates. We reviewed 101 papers published in The Journal of Wildlife Management (JWM) between 1980
and 1997 that estimated animal home ranges. A minority of these papers used nonparametric utilization dis-
tribution (UD) estimators, and most did not adequately report sample sizes. We recommend that home range
studies using kernel estimates use LSCV to determine the amount of smoothing, obtain a minimum of 30
observations per animal (but preferably =50), and report sample sizes in published results.
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Kernel methods have recently become pop-
ular for home range estimation, and a number
of programs are available to implement them
(Seaman et al. 1998). Previous work has dem-
onstrated that kernel methods can provide more
accurate home range estimates than the har-
monic mean or minimum convex polygon
(MCP) models (Naef-Daenzer 1993, Worton
1995, Seaman and Powell 1996, Swihart and
Slade 1997). Boulanger and White (1990) dem-
onstrated that other popular home range esti-
mators perform more poorly than the harmonic
mean.

Kernel methods produce a density estimate
that can be interpreted as a UD (van Winkle
1975). A strength of UD estimators is that they
provide 3-dimensional estimates of home rang-
es. The third dimension corresponds to the
amount of time the animal spent in any given
area of its home range and is useful for assess-
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ing issues such as habitat selection (Mitchell
1997).

All estimators are subject to sampling error,
which diminishes as sample size increases. Ad-
ditionally, the accuracy of any estimator de-
pends on the distribution of the data. For ex-
ample, normal-theory statistical estimators are
unbiased only for normally distributed data. Be-
cause animal home ranges rarely conform to
simple statistical distributions, estimators that
rely on distributional assumptions are likely to
perform poorly as home range estimators. Ker-
nel estimators are nonparametric, meaning they
are not based on an assumption that the data
conform to specified distributional parameters.
Nevertheless, the accuracy of the estimates they
produce will vary depending on the distribution
of the data.

No analytical method is available to deter-
mine the necessary sample size for nonpara-
metric home range estimators because they do
not have an associated variance estimator
(White and Garrott 1990). Several studies with
the MCP home range estimator have used area-
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observation curves on radiotelemetry data or on
simulated locations to determine adequate sam-
ple size. These studies have concluded that
100-300 locations are necessary to reach as-
ymptotic levels for the MCP (Bekoft and Mech
1984, Laundre and Keller 1984, Harris et al.
1990).

Silverman (1986) calculated the sample size
requirements for multivariate kernel estimators.
He used only a very restricted case where he
specified the desired level of precision for the
density estimate at a single point at the center
of a normal distribution. For bivariate normal
distributions with desired precision (relative
mean squared error) of 0.1, he calculated a nec-
essary sample size of 19. Swihart and Slade
(1997) explored the effects of several sampling
parameters (autocorrelation, study duration,
sampling rate, sampling style, sample size) on
the bias of MCP and fixed kernel home range
size estimates. Their emphaﬁis was on the pa-
rameters other than sample size, but they noted
that bias decreased with larger sample sizes.

We expected that accuracy of kernel home
range estimates would depend on sample size
and shape of the home range. Therefore, we
used Monte Carlo methods with various num-
bers of locations and shapes to evaluate the ac-
curacy of kernel methods for estimating the
area and the UD surface fit of simulated home
ranges. We reviewed papers published in JWM
between 1980 and 1997 that reported original
estimates of animals” home ranges. We tabulat-
ed the home range estimation techniques they
used, and what information they reported about
sample sizes.

METHODS
Simulations

We assumed an animal’s home range could
be represented by a UD and created home
range distributions that were simple or comp]ex
in shape (Fig. 1). Simple distributions consisted
of a single bivariate normal distribution. Com-
plex distributions had characteristics frequently
seen in animal home ranges: they were multi-
modal (i.e., had multiple centers of activity),
had occasional disjunct areas, were nonconves,
and were nonuniform (i.e., the distribution was
not the same height across the entire area of
the home range).

We simulated 3 types of home ranges by ran-
domly sampling locations from a single bivariate
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Fig. 1. Example of shapes of simulated home ranges com-
posed of (A} 1, (B) 4, and (C) 16 bivariate normal distributions.

normal distribution or from mixtures of 4 or 16
bivariate normal distributions (Fig. 1). The val-
ues of the means, standard deviations, and co-
variances of the bivariate normal distributions
were randomly selected from uniform distri-
butions. Mean values for the X-Y coordinates of
the components were randomly selected within
the range 0 to 20; standard deviations ranged
from 1 to 6; X-Y covariances (p) ranged from
—1 to 1; and mixing proportions were >0 and
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constrained to sum to 1 (Seaman and Powell
1996). The shape of the simulated UD was de-
termined by calculating the donslty at grid
points via the normal density function (Hogg
and Craig 1995:147)
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The 3 types of home ranges (1, 4, or 16 com-
ponents) were each represented by 10 realiza-
tions (i.e., 10 different sets of parameters defin-
ing the components of the mixture). Each of
these 30 home ranges was sampled with 10, 20,
30, 40, 50, 60, 70, 80, 90, 100, 150, and 200
points. We ran 100 replicates at each sample
size for each home range, for a total of 36,000
simulations. We used the variance of the 100
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replicates as an empirical estimate of precision
because variance estimators do not exist for
nonparametx ic home range estimators. Simulat-
ed true home range shapes that could not be
estimated within the available computer mem-
ory were discarded and new home ranges were
simulated in their place.

Area Bias

Home range an alyses usua]ly estimate the
area of home ranges, so it is useful to know the
accuracy of kernel area estimates. We calculat-
ed the minimum area that contained 95% of the
estimated UD (A) and calculated the percent
relative bias (PRB) with respect to the 95% area
of the true distribution (A) via the following:

PRB = [A — AVA X 100,

Although home range studies often focus on
the 95% use area, the bias at the 95% contour
may not be representative of bias at other con-
tours. Therefore, we analyzed the bias at 10
contours of the UD, 10-90% contours at 10%
intervals, and the 95% contour.

Surface Fit

We measured the accuracy of the 3-dimen-
sional surface estimate assessed over a regular
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grid of evaluation points as the relative mean
squared error (RMSE):

RMSE = = E f f(x>]2

n =1 f) =

where n is the number of grid points, x is a
vector of the grid point coordinates, f is the es-
timated density at the grid point, and f is the
true denuty at the gnd point. This measure is
only calculated for grid points within the 95%
UD of the true home range, within the 95%
UD of the estimated home range, or both. Cal-
culating RMSE for grid points within the 95%
UD minimized the effects of small errors in the
tails of the UD (cf. Seaman and Powell 1996).
Also, measuring the surface fit at grid points is
a more complete measure than is obtained from
the observation coordinates (cf. Worton 1989).

The measure of error for surface fit (RMSE)
uses the squared errors and therefore contrasts
with bias because RMSE is nondirectional. We
chose this measure for surface fit because it is
more interesting in this context. An estimated
surface that is low over a portion of the UD and
high over another could have a mean error of
zero but a lalg’(, RMSE. uuwc\/cl, an estimated
surface that is only slightly too high over the
entire distribution would have a positive error
and a small RMSE. The latter estimate would
be more desirable despite its positive bias.

Estimation Programs and Methods

The home range estimates in this study were
produced by the algorithm used in program
KERNELHR (Seaman et al. 1998). This algo-
rithm was incorporated into a different program
(MISE) that also calculated RMSE. Initial
home range estimates were made via the fixed
and adaptive kernels, with the amount of
smoothing determined by the REF method and
by LSCV (Worton 1995, Seaman and Powell
1996).

Upon inspection of the initial simulations, we
evaluated whether the large RMSE at small
sample sizes was due to sampling error or the
behavior of LSCV with small sample sizes. Sam-
pling error is the result of random selection of
points not representaﬂve of the true distribu-
tion and is more influential with small sample
sizes. However, poor estimates could also result
from incorrect smoothing, which may occur if
LSCV is unable to operate effectively with small
sample sizes (regardless of whether they are
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representative of the true distribution). To in-
vestigate this question, we assumed LSCV had
selected the correct smoothing for sample sizes
of 150-200 (Bowman 1985, Seaman and Powell
1996), then we applied this smoothing value to
all home ranges and sample sizes. The mean
amount of smoothing selected by LSCV for
large sample sizes was about 50% of the refer-
ence value, so we applied 50% of the reference
value smoothing to all sample sizes.

Literature Review

We performed a computer search of research
papers published in JWM between 1980 and
1997, using the keywords “home range” and
“movements.” We began the search with 1980
because that was when UD estimation became
generally available to wildlife researchers (Dix-
on and Chapman 1980). We examined each pa-
per that reported original home range estimates
to determine which home range estimators
were used and how sample sizes were reported.
Sample size reporting was categorized as (1) no
information; (2) total number of observations
(for all study animals combined); (3) minimum
number of observations per animal; and (4)
sample size for each animal, or the mean or

range for all animals.

RESULTS
Area Bias

When we used LSCV to select the amount of
smoothing, small sample sizes (<50 observa-
tions) greatly overestimated home range area.
For these estimates, larger sample sizes re-
duced bias and increased precision (indicated
by smaller standard errors) for both the fixed
and adaptive kernels. For the fixed kernel esti-
mates (Fig. 2A), these improvements ap-
proached an asymptote at a sample size of about
50 for the 1 and 4 component ranges, but the
16 component ranges continued to improve
slightly as sample sizes increased to 200. Adap-
tive kernel estimates (Fig. 2B) did not reach a
clear asymptote, but improvement's were small-
er at sample sizes >50.

Estimates from the fixed kernel with smooth-
ing selected by LSCV (Fig. 2A) generally had
the smallest bias for all 3 home range types. The
only exception was for l-component ranges,
which had less bias when we used the fixed ker-
nel with smoothing selected by the reference
method.

When we used REF to select the amount of
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Fig. 2. Percent relative bias (PRB) of home range size esti-
mates for 4 kernel estimates: (A) fixed kernel, smoothing se-
lected by least-squares cross-validation (LSCV); (B) adaptive
kernel, smoothing selected by LSCV; (C) fixed kernel, smooth-
ing selected by reference (REF); and (D) adaptive kernel,
smoothing selected by REF (D). Point estimates are means of
1,000 replicates (100 replicates for 10 home range shapes),
and vertical bars represent = 1 standard error.
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Fig. 3. Percent relative bias (PRB) of the estimate of home
range area within 10 contours. Estimates used smoothing se-
lected by least-squares cross-validation on home ranges com-
posed of 16 bivariate normals. (A) Fixed kernel estimates, lines
represent the 10, 20, 30, 40, 50, 60, 70, 80, 90, and 95%
utitization distribution contours from top to bottom at sample
size of 200; (B) adaptive kernel estimates, lines represent the
95, 90, 10, 80, 70, 60, 50, 40, 30, and 20% use contours from
top to bottom at sample size of 200. All values are means of
1,000 replicates for each sample size. Note different scales for
Y-axis in (A) and (B).

smoothing, sample size had little effect on es-
timates (Figs. 2C,D), and REF estimates had
greater bias overall than those with smoothing
selected by LSCV (Figs. 2A,B). Of the 3 types
of home ranges, the 4-component home ranges
showed the greatest reduction in bias with
smoothing selected by LSCV as opposed to
REF (Figs‘ 2A.B vs. 2C, D).

Bias of the inner contours was greater than
bias of the 95% contour for fixed kernel esti-
mates (Fig. 3A). The general trend for adaptive
kernel estimates was opposite of the fixed ker-
nel estimates: outer contours were most biased
and inner ones least biased (Fig. 3B). However,
the results for the adaptive kernel estimates are
less clear because adaptive kernels use many lo-
cal adjustments to the amount of smoothing,
which causes local variation in the bias at all
contours.

Surface Fit

Surface fit improved as sample size increased
to about 50 observations (Fig. 4) and was largely
unaffected by kernel methodology (fixed vs.
adaptive, or smoothing selected by LSCV vs.
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Fig. 4. Relative mean squared error (RMSE) for kernel esti-
mates for 3 home range types composed of (A) 1, (B) 4, and
(C) 16 bivariate normal distributions. Point estimates are
means of 1,000 replicates {100 replicates for 10 home range
shapes), and vertical bars represent = 1 standard error. Meth-
ods are least-square cross-validation (LSCV) and reference
(REF). .

REF). The exception was for 4-component
home ranges that never achieved good fit with
smoothing selected by REF (Fig. 5B).

Most home ranges had RMSE values =1.0,
but 8% of home range estimates had much larg-
er RMSE (range = 1.0-4.6 X 10%; Table 1).
When the home ranges with RMSE >1.0 were
included with all other home ranges, they ob-
scured the general trends; therefore, they were
analyzed separately. The fixed kernel with
smoothing selected by LSCV produced the few-
est estimates with extreme error values. Large
RMSE values were most common when
smoothing was selected by REF, particularly
with the adaptive kernel. Large RMSE oc-
curred most frequently with very small sample
sizes (10-20), and was quite rare (<0.3% of rep-
licates) for the fixed kernel with LSCV when
sample sizes were >30. Large RMSE occurred
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(LSCV). A sample of =50 observations was nec-
essary to reduce average size bias or RMSE
near asymptotic levels.

The pattern of overestimation of home range
size with small sample sizes is opposite the find-
ings for MCP estimators (Bekoff and Mech
1984, Laundre and Keller 1984, Harris et al.

1990). Our results also contrast with those of

Hansteen et al. (1997) who found that small
sample sizes produced generally smaller kernel
home range estimates. They used kernel esti-
mates with REF smoothing (from program
RANGES 1V) and a range of sample sizes from
the locations of 3 root voles (Microtus oecono-
mus). We believe the differing patterns result
from the behavior of LSCV versus REF, idio-
syncrasies of home ranges, and differences in
definitions of home range area. Small sample
sizes pmwdo little information about the true
shape of the distribution, and the LSCV process
increases the amount of smoothing, which re-
sults in larger home range size estimates. The
MCP and some kernel programs use a percent-
age of the sample points to describe the home
range (Seaman et al. 1998), which means that
small sample sizes will have poor representation
in the tails of the Lustﬂuuuun and the area es-
timate will be too small. In contrast, the defi-
nition of the home range in KERNELHR is
based on the volume of the estimated UD (Sea-
man et al. 1998). The estimated area is larger
because the tails of the UD are estimated from
the information contained in the entire sample
and do not depend entirely upon the few points
that actually fall in the tails of the distribution.
Since the accuracy of an estimator depends on
the underlying distribution that the sample is
drawn from, it is hard to generalize about the
behavior of an estimator from results with a
small number of home ranges (e.g., the 3 voles
used by Hansteen et al. [1997]). Even the great-
er replication of our simulations needs to be
confirmed with locations of many real animals.

We found limited support for our expectation
that larger sample sizes would be .required to
obtain accurate estimates for more complex
home range shapes. With smoothing selected by
LSCV, simple (1-component) ranges had the
smallest PRB at sample size 10, and complex
ranges required sample sizes of 30-40 to
achieve smaller PRB than simple ranges. In
contrast, with smoothing selected by REF, 1-
component ranges had the smallest PRB re-
gardless of sample size. Low PRB is expected
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with smoothing selected by REF for L-compo-
nent ranges because they meet the REF meth-
od assumption of bivariate normality (Silverman
1986). Although the RMSE was clearly better
for 1- than for 4-component ranges, 16-com-
ponent ranges were nearly as good as the simple
ranges.

Caution must be used in extrapolating from
simulations to real data. We believe that mix-
tures of parametric distributions mimic real
data more closely than samples from uniform
distributions with simple geometric shapes (e.g.
square, circular). However, our simulations do
not give precise quantitative predictions about
the performance of the estimators with real
data. Also, all simulated observations were in-
dependent; we did not investigate the effects of
serial autocorrelation (Swihart and Slade 1997).
In field studies, there generally will be some
sequential autocorrelation between observa-
tions, which will often increase as locations are
recorded more frequently.

Estimates of 95% home range size were sen-
sitive to the amount of smoothing. This sensi-
tivity was demonstrated by the large difference
in the bias between estimates with smoothing
selected by LSCV and REF. In contrast, the
surface fit was relatively insensitive to the
amount of smoothing; all kernel estimators pro-
vided good estimates of the surface fit. Overall,
the fixed kernel with smoothing selected by
LSCV produced estimates with the lowest bias
and lowest surface fit error and is recommend-
ed of the methods tested here. However, most
of the difference between the fixed and adap-
tive kernel estimates occurred in the outer con-
tours (>80% of the UD, data not shown); adap-
tive kernel estimates with smoothing selected
by LSCV are satisfactory up to the 80% UD
contour.

The unreliability of estimates in the outer
contours has significant implications for home

range analyses. Most studies report results for
95% home range estimates, but the peripheral
area has the least data to support an estimate,
probably has the least biological significance for
the animal, and has the most opportunity to in-
fluence numerical results. It is important to ac-
knowledge that our ability to make accurate es-
timates is limited in this region, while recogniz-
ing that the peripheral area is a necessary part
of the home range for fulfilling the animals’ bi-
ological requirements. We recommend that fu-
ture studies emphasize the central parts of an-



746

imals” home ranges for comparative numerical
analyses (e.g., comparisons of home range size
between populations, measures of overlap be-
tween neighbors) and habitat selection.

Choosing the correct amount of smoothing is
important for obtaining accurate kernel esti-
mates. The REF method is often referred to as
the “optimal” smoothing width because it is op-
timal for bivariate normal distributions. How-
ever, the reference method should be avoided
for home range estimation because it produces
estimates with high bias and poor surface fit for
distributions such as the complex ones simulat-
ed here. The LSCV method is preferable to the
REF method for choosing the amount of
smoothing, but other methods also deserve in-
vestigation (e.g., “solve-the-equation plug-in”
[Sheather and Jones 1991, Jones et al. 19961;
biased cross-validation [Sain et al. 1994]).

Surface fit was better (RMSE was lower) with
smoothing selected by LSCV than with smooth-
ing set at 50% of REF in almost all simulations.
The only exceptions were for large RMSE (Table
1) at small sample sizes (10-30 locations}. In
these cases, LSCV had consistently selected a
large bandwidth (data not shown). T' hese incon-
sistanit results at small sample sizes demonstrate
that the only reliable means of obtaining accu-
rate home range size estimates and low RMSE
is to collect >30 locations.

Collecting more frequent locations may re-
sult in increased autocorrelation between
points. However, several authors (Andersen and
Rongstad 1989, Reynolds and Laundre 1990,
Minta 1992, McNay et al. 1994, Swihart and
Slade 1997, Otis and White 1999) have argued
that adequate samplo size is more Important
than independence between points. In view of
their conclusions and our results, we recom-
mend that home range studies to be analyzed
with kernel estimators obtain a representative
sample of =30 locations, and preferably =50
locations.

Home range estimates are significantly af-
fected by sample size (Bowen 1982, Bekoff and
Mech 1984, Laundre and Keller 1984, Acker-
man et al. 1990, Harris et al. 1990, this study)
and by the estimator used (Boulanger and
White 1990, Worton 1995, Seaman and Powell
1996). Even within kernel-based methods, var-
iations (fixed vs. adaptive, LSCV vs. REF
smoothing) can have large effects on the re-
sulting estimates (Worton 1995, Seaman and
Powell 1996, this study). Valid comparisons be-
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tween studies cannot be made when sample siz-
es and estimation methods differ. Therefore, we
strongly recommend that authors report sample
sizes and the exact home range estimation
method used.

The MCP remains the most commonly used
home range estimator, despite widespread rec-
ognition of its weaknesses (Jennrich and Turner
1969, Worton 1987, Harris et al. 1990, White
and Garrott 1990). Reasons cited for using the
MCP include its value for comparison to previ-
ous work and its ease of calculation. These rea-
sons are inadequate, because comparisons to
previous work are unreliable given the extreme
sensitivity of MCP to sample size (which is often
unreported), and computer programs are now
available that perform more sophisticated home
range estimates with ease (Seaman et al. 1998).
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