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Abstract. We have developed an approach for using ‘‘presence’ data to construct
habitat models. Presence data are those that indicate locations where the target organism
is observed to occur, but that cannot be used to define locations where the organism does
not occur. Surveys of highly mobile vertebrates often yield these kinds of data. Models
developed through our approach yield predictions of the amount and the spatial distribution
of good-quality habitat for the target species. This approach was developed primarily for
use in a GIS context; thus, the models are spatially explicit and have the potential to be
applied over large areas. Our method consists of two primary steps. In the first step, we ~
identify an optimal range of values for each habitat variable to be used as a predictor in
the model. To find these ranges, we employ the concept of maximizing the difference
between cumulative distribution functions of (1) the values of a habitat variable at the
observed presence locations of the target organism, and (2) the values of that habitat variable
for all locations across a study area. In the second step, multivariate models of good habitat
are constructed by combining these ranges of values, using the Boolean operators ‘‘and”
and ‘““or.”” We use an approach similar to forward stepwise regression to select the best
overall model.

We demonstrate the use of this method by developing species-specific habitat models
for nine forest-breeding songbirds (e.g., Cerulean Warbler, Scarlet Tanager, Wood Thrush)
studied in southern Ohio. These models are based on species’ microhabitat preferences for
moisture and vegetation characteristics that can be predicted primarily through the use of
abiotic variables. We use slope, land surface morphology, land surface curvature, water
flow accumulation downhill, and an integrated moisture index, in conjunction with a land-
cover classification that identifies forest/nonforest, to develop these models.

The performance of these models was evaluated with an independent data set. Our tests
showed that the models performed better than random at identifying where the birds occurred
and provided useful information for predicting the amount and spatial distribution of good
habitat for the birds we studied. In addition, we generally found positive correlations
between the amount of habitat, as predicted by the models, and the number of territories
within a given area. This added component provides the possibility, ultimately, of being
able to estimate population sizes. Our models represent useful tools for resource managers
who are interested in assessing the impacts of alternative management plans that could
alter or remove habitat for these birds.
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birds; GIS; microhabitat preferences; moisture gradients; presence data; Scarlet Tanager; spatially
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INTRODUCTION

Predictive habitat models that can be applied over
large geographic areas have broad applicability in con-
servation biology and wildlife management, including
such subdisciplines as ecosystem management and
landscape ecology (Hunter 1996). Assessing the
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amount or location of habitat over large areas in a
manner that is neither labor intensive nor prohibitively
time-consuming holds many benefits for managers and
researchers working on large-scale issues.

The wildlife-habitat relationships (WHR) system
(Verner and Boss 1980) and the habitat suitability index
(HSI), developed by the U.S. Fish and Wildlife Service
(1981), were among the first attempts to predict wildlife
presence or relative abundance across large areas.
These models, however, were based mainly on litera-
ture reviews, generally did not pertain to well-defined
populations, and were not based on statistical models
or procedures. Many of the models were not field test-
ed, or performed poorly when they were tested (Bart
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et al. 1984, Dedon et al. 1986, Laymon and Barrett
1986, Raphael and Marcot 1986, Johnson et al. 1989,
Robel et al. 1993). Many authors (e.g., Van Horn and
Wiens 1991) have recommended against the use of un-
tested WHR and HSI models.

Several statistical methods can be used to develop
predictive habitat models for large areas. These meth-
ods, and examples of their use, include linear regres-
sion (Morrison et al. 1987, Rice et al. 1993, Puttock
et al. 1996), logistic regression (Straw et al. 1986, Na-
deau et al. 1995, Pausas et al. 1995, St. Georges et al.
1995), discriminant analysis (Mosher et al. 1986, Liv-
ingston et al. 1990, Fielding and Haworth 1995), prin-
cipal component analysis (Debinski and Brussard
1994), canonical correlation analysis (Andries et al.
1994), and classification and regression tree (CART)
analysis (O’Connor et al. 1996).

These methods generally require that counts be made
of how many individuals of the target species are pres-
ent on plots. The sampling unit is thus a plot, and the
variables are ‘‘number of animals present’’ and one or
more descriptors of the habitat. In this context, zero
means ‘‘none present,”’ not simply ‘‘none recorded.”
When the “number” of animals is simply recorded as
either O or 1, the data are often referred to as presence—
absence data. Many wildlife surveys, however, do not
provide this type of information (i.e., count data or
presence—absence data). Instead, data are only collect-
ed from locations at which animals were observed. We
refer to data of this sort as “presence data” to distin-
guish them from presence—absence data. Presence data
are particularly common in surveys of highly mobile
vertebrates that might use a given plot when the ob-
server is not present. In such cases, it is almost im-
possible to declare that a given plot is never used by
the target species. Instead, observers collect informa-
tion about plots that were used.

Clark et al. (1993) and Knick and Dyer (1997) have
developed a modeling approach tailored specifically for
presence data. Their method is based on the Mahala-
nobis statistic (e.g., Johnson and Wichern 1988). In
principle, this method defines “‘optimum” habitat as a
multivariate vector of the means of the habitat vari-
ables, with the means calculated from the presence
data. Habitat quality for each plot in the study area is
based on the ‘‘distance” (i.e., similarity) to that mul-
tivariate mean, as measured by the Mahalanobis sta-
tistic. Calculations are based on the inverse of the co-
variance matrix and standardized variables and, thus,
are more complex than our simplified description of
the method. Knick and Dyer (1997) developed and test-
ed a model for jackrabbits based on this approach. They
found good correlation between observed locations,
taken from a new sample, and habitat quality, as es-
timated by their model. For example, they constructed
the cumulative distribution of habitat scores and found
that the first 20% of the distribution contained 80% of
the sightings in their validation sample. Clark et al.
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(1993) found that their Mahalanobis model of black
bear habitat reflected the same characterizations of hab-
itat use as did tests of habitat selection using their
habitat variables individually.

We have also developed an approach for using pres-
ence data to develop models that predict habitat quality.
Our methods were developed independently of the ap-
proach just described, and were primarily for use in a
GIS context. Models developed from our approach
yield predictions of the amount and spatial distribution
of good-quality habitat for the target species. In this
paper, we describe our approach, provide examples of
bird—habitat models developed using this approach,
evaluate the performance of these models, and compare
our approach with the method based on the Mahala-
nobis statistic.

METHODS
Description of the analytic method

The initial procedure in our model development is
to partition a study area into ‘‘plots” (e.g., pixels in a
GIS analysis) and to define a series of habitat predictor
variables. The value of every variable must be known
for every plot (not just plots sampled for presence of
the target organism). Thus, this method generally is
based on GIS methods, although, in principle, the
“plots’” might be X-Y locations that could be obtained
without having GIS layers. Next, we obtain a sample
of n “‘presence’’ observations of the target organism.
We know in which plot each observation occurred and,
thus, the values of the habitat variables associated with
each observation.

Then we construct a quantitative definition of ‘‘good
habitat’’ using the habitat variables. Rules for con-
structing the definition will be described. This defini-
tion is used to classify every plot in the study area as
“good” or ‘“‘otherwise.” Throughout this article, we
use ‘“‘good habitat” simply to mean the area delineated
by the model. No assumption is made about use in
relation to availability, or about how the animal decides
which areas to use. Let P, be the proportion of a study
area that is delineated as good habitat by a particular
model. The quantity P, is a known parameter, not a
random variable, because its value for every plot in the
study area can be calculated. We use uppercase letters
for parameters and lowercases letters for their esti-
mates. We can also classify each observation of the
target species as being in good habitat or otherwise.
Let p, be the proportion of the n presence observations
that are in good habitat. The quantity p, is a random
variable and an estimate of the proportion of obser-
vations that would be in good habitat with an indefi-
nitely large sample size.

Our modeling procedure is an attempt to find the
definition of good habitat that maximizes the quantity
(p, — P,), subject to the constraint that p, is greater
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than some threshold, . We thus search for the definition
of good habitat that yields

max(p, — P,|p, > 0.

The rationale for using this definition may be explained
as follows. If we could find a definition such that 90%
of the observations are in good habitat (p, = 0.9), but
good habitat covers only 20% of the study area (P, =
0.2), then we would feel fairly confident of having
identified habitat that is highly attractive to the organ-
ism. In contrast, if a definition of good habitat captures
only 60% of the observations and good habitat covers
50% of the study area, then such a definition would
not describe highly attractive habitat, because a defi-
nition constructed at random would perform nearly this
well (i.e., with a randomly constructed definition, the
expected value of p, — P, is 0.0). A threshold, ¢, is
established because we wish the definition of good hab-
itat to capture a large fraction of the observations and,
thus, to be applicable to a large proportion of the target
population. For example, we might require that the def-
inition of good habitat capture at least 70% of the ob-
servations (i.e., t = 0.7). Different values of ¢ can be
used, depending on the context and intended applica-
tion of the model.

Many approaches for defining good habitat might be
imagined. Our approach involves two primary steps.
First, we identify an ‘“‘optimal’’ lower to upper range
of values, X, to X, , for each habitat variable j, j = 1,
..., k. Then in the second step, good habitat is defined
by combining these ranges using the Boolean operators
““and”” and “‘or.”” For example, with three habitat vari-
ables, the definition of good habitat might be

(X, <x,<X,,) o X5, <x <X,)] and

X, <x,<X;) €))

where x,, x,, and x;, are the values of habitat variables
1, 2, and 3 in plot i. This form allows such definitions
as [(vegetation of type 1 or type 2) and close to water]
and, thus, is much more flexible than a definition using
only linear combinations of the habitat variables (e.g.,
cxy, oot o).

One problem with this approach is that the number
of possible definitions for good habitat is extremely
large (infinitely large if any of the variables is contin-
uous, because an infinite number of choices for X; and
X, then exists). An algorithm is thus needed to choose
the rule set for defining good habitat. Our two-step
modeling approach provides such an algorithm, which
we now describe. In the first step, we consider each
variable separately. For variable j, j = 1, ..., k, we
search for the range of values that yields

max(p, — P, | p, > 0

where p;_ is the proportion of observations falling with-
in the range X to X; and P; is the proportion of the
study area falling in the range X, to X;. We again
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employ the constraint of p; > ¢ to ensure that we have
accounted for a reasonably large proportion of the ob-
servations. To find this range, we use cumulative dis-
tribution functions (CDFs) of (1) the values of habitat
variable j associated with the presence observations
and (2) the values of habitat variable j for all the plots
in a study area. Our calculations follow the equations
described in Perry and Smith (1994) for CDFs without
stratifying by study area. Using the CDFs, we can easily
calculate: F,(X)), the proportion of presence observa-
tions for which the value of habitat variable j is =X,
and F (X)), the proportion of the study area in which
the value of habitat variable j is =<X. If the value of
one of these two functions is always greater than the
other over the entire range of values for variable j, then
it is easy to show that the value of X; that maximizes
F (X)) — F(X)), given F (X)) > t, also maximizes p;, —
P,, given p; > t. Because the condition of one function
always being greater than the other over all values of
a variable does not always hold, and because the CDFs
can have multiple modes, we used the following, more
complex, algorithm for finding the range X to X, that
maximizes p;, — P,.

If we set p;, = F(X;) — F(X;) and P, = F(X) —
F(X;), where U and L indicate upper and lower values

of X;, then we can represent the expression p; — P, as

[Fo(X;) — F(X)l + [F(X;) — F(X)l (@)

Thus, for cases in which the CDFs were unimodally
distributed and F,(X)) > F(X)) for all or nearly all val-
ues of X, then X; was found as the value of X that
maximized F (X)) — F(X)), given F(X)) > t. The cor-
responding X; was then found as the X; that maximized
F(X) — F,(X) given p, > tand X; < X;. If F,(X,)
was never <F((X;) for any value of variable j <X,
then X; was set to the minimum possible value of vari-
able j (see Fig. 1A). When the CDFs were unimodally
distributed and F(X;) > F,(X)) for all or nearly all val-
ues of X, then X; was found as the X; that maximized
F(X;) — FyX), given F,(X)) < 1 — ¢ The corre-
sponding X;, was found as the X; that maximized
F(X;) — F(X,), given p; >t and X;, > X, . If F (X))
was never >F (X)) for any value of variable j >X; , then
X;, was set to the maximum value of variable j (see
Fig. 1B). For cases in which the CDFs were bimodal,
we modified Expression 2 to contain two of each term
in this expression, one representing each mode, and
then applied the appropriate algorithm to each mode.
More complex distributions could be handled in a sim-
ilar fashion.

Using the range chosen for each variable, we con-
structed multivariable models by using the Boolean
operators and parentheses (see Expression 1). Models
were compared based on the value of p, — P, All
possible single- , two- , and three-variable models were
evaluated. For higher order models, we used an ap-
proach similar in principle to forward stepwise re-
gression to select the best model at each stage. For
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Fig. 1. Examples of how cumulative distribution func-
tions (CDFs) were used in defining ranges of values for the
habitat variables. As described in Description of the analytic
method, the point where the maximum difference occurs be-
tween the two functions indicates one of the cutoff values for
the range of that variable. In Example (A), which uses the
integrated moisture index and observations for Eastern Wood-
Pewee (EWPE), the range for slope would be defined as <62.
In (B), which uses slope and observations for Wood Thrush
(WOTH), the CDF for the observations is less than that for
the study area, so the range would be defined as >27.

example, all possible four-variable models that could
be constructed using the variables from the best three-
variable model were considered, and the best one was
selected, and so on. We selected the overall best model
as the one that produced the maximum value of p, —
P,. Like stepwise regression, this approach does not
examine all possible models and does not necessarily
find the ‘“‘best’” model, but it is tractable and seems
likely to come at least fairly close to finding the optimal
definition of good habitat. Knowledge of a species and
its habitat was used in deciding how to combine vari-
ables (i.e., how to use parentheses and the operators
“and” and ‘“‘or’’). In addition, a general rule of thumb
was used in deciding which Boolean operator should
be used. The ““and” operator was typically used for
cases in which at least one of the variables or groups
of variables to be joined produced a relatively large
value (>0.85) of p, when in the model by itself. The
““or” operator was typically used otherwise.
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We used this analytic method to develop GIS-based
models for nine bird species. Six habitat variables were
used as predictors, and we used ¢ = 0.7. All models
were developed and tested at a 30-m resolution.

Study area and species

Our study was conducted on the Wayne National
Forest and Raccoon Ecological Management Area in
southeastern Ohio, United States, during 1994-1995
(Fig. 2). The predominant habitat type in this region
is mature forest (60—100 yr old) dominated by mixed
oak (Quercus spp.) and mixed hickory (Carya spp.).
This is the vegetation type in which our study areas
were established. Sugar maple (Acer saccharum), red
maple (Acer rubrum), American beech (Fagus gran-
difolia), and tulip popular (Liriodendron tulipifera)
were other species commonly contributing to the over-
story tree component of our study areas.

Models were developed to delineate preferred habitat
for the nine most common forest songbirds in this area:
Acadian Flycatcher (Empidonax virescens, ACFL), Ce-
rulean Warbler (Dendroica cerulea, CERW), Eastern
Wood-Pewee (Contopus virens, EWPE), Hooded War-
bler (Wilsonia citrina, HOWA), Ovenbird (Seiurus au-
rocapillus, OVEN), Red-eyed Vireo (Vireo olivaceus,
REVI), Scarlet Tanager (Piranga olivacea, SCTA),
Wood Thrush (Hylocichla mustelina, WOTH; see Plate
1), and Worm-eating Warbler (Helmitheros vermivorus,
WEWA). These were the species for which we were
able to collect a sufficient number of observations
across all study areas for building and testing models.

, , 5 o
PLATE 1. Typical Wood Thrush nesting habitat in south-
eastern Ohio. Photo credit: George H. Harrison.
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Fi1G. 2. Location of the 32 areas (solid dots) surveyed in 1995 to collect data for testing the bird—habitat models.

Bird surveys

Surveys were conducted during 0600 to 1200 and
followed methods for territory mapping (Robbins
1970). Prior to the surveys, observers were trained for
2-3 d to insure competence in identifying and plotting
birds. Each person covered ~30 ha/d. Bird observa-
tions were plotted on topographic maps and were later
digitized using Arc/Info version 7.0 (Environmental
Systems Research Institute 1995). Because we were
unable to visit each study area a sufficient number of
times, we did not estimate territory boundaries from
the survey data, but used only the plotted observations.
Thus, the survey data used to develop and evaluate our
models consisted of observed points indicating ‘“pres-
ence” locations, not polygons delineating territory
boundaries.

In 1994, surveys were conducted on five 90-ha study
areas, two in the Raccoon Ecological Management
Area and three in the Ironton Unit. Each area was sur-
veyed 2-3 times during 20 May-1 July. Data from these
areas were used to develop the habitat models.

In 1995, surveys were conducted on 32 30-ha study
areas. These areas were selected throughout the Wayne
National Forest using a stratified random design. Strata
and sample sizes were: Athens Unit, 10 study areas;
Ironton Unit, 10; Marietta Unit, 6; and Raccoon Eco-
logical Management Area, 6 (Fig. 2). Areas were sur-
veyed on 3—4 consecutive days during 15 May-15 July.
We felt that this level of effort was sufficient for es-
timating the number of territories, but not the location
of territory boundaries, on each area. Data from these
study areas were used to evaluate the performance (see
Model evaluation) of habitat models developed using

the 1994 data. These data were also used to calculate
our estimates of territory density.

Habitat variables

We obtained GIS layers for the following habitat
variables: land cover (forest vs. nonforest), an ‘“‘inte-
grated moisture index’’ (Iverson et al. 1997), slope,
surface curvature of the landscape, surface morphology
(i.e., concave vs. convex land surfaces), and flow ac-
cumulation of water downslope. We used an existing
land cover classification, prepared from 1986 Thematic
Mapper data by the Ohio Department of Natural Re-
sources (Yi et al. 1994), to distinguish forest from non-
forest. The great majority of forest cover in south-
eastern Ohio can be characterized as an oak—hickory
type (Zhu and Evans 1994), which we assumed to be
an appropriate general habitat type for the species we
modeled. The integrated moisture index was a relative
rating (from 0 to 100) of environmental moisture, and
was designed to indicate increasing levels of moisture
available for plant growth. The index was a function
of solar radiation, relative slope position, surface cur-
vature, and water holding capacity of the soil. Calcu-
lation of the index is explained in Iverson et al. (1997).
The other variables were calculated from 7.5-minute
digital elevation model (DEM) data at a 1:24 000 scale
and 30-m resolution using standard Arc/GRID com-
mands (Environmental Systems Research Institute
1995).

Model evaluation

For consistency with earlier notation, we regarded
each of the 32 areas used to evaluate model perfor-
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mance as a separate ‘‘study area.”’ Model performance
was evaluated using the following quantities:

Do, = proportion of the observations from study area
i in good habitat, i = 1, ..., 32

P, = mean of the p,,

P,, = proportion of study area i in good habitat,
i=1,...,32

P, = mean of the P,,.

Model performance was evaluated in four ways, each
of which is discussed.

Satisfying the constraint.—The constraint used in
model development was p, = 0.7. It was expected that,
occasionally, p, < 0.7 on a new set of plots, but a
general tendency for p, < 0.7 would indicate poor per-
formance of the model. We therefore tested whether p,
was significantly less than 0.7, using a one-tailed ¢ test.
Failure to reject constituted support for the model.

Comparison with a random model.—A model con-
structed at random would tend to produce p, — P, =
0.0. We therefore determined whether the values p, —
P, tended to be greater than 0.0 in our sample. Spe-
cifically, we used a one-tailed 7 test to determine wheth-
er p, — P, was significantly greater than 0.0. This test
showed whether the models had any predictive power
(compared to a random model). The distribution of the
differences and their mean values provided a descrip-
tion of how much (if at all) better than chance our
models performed.

Distances to good habitat.—If the model were to
delineate the spatial distribution of good habitat fairly
well, then we might expect that observations outside
good habitat would tend to be closer to good habitat
than points randomly distributed in ‘‘other” habitat.
We tested this hypothesis by calculating:

d,, = for study area i, the average distance from
observations in ‘‘other’’ habitat to the edge of

the closest patch of good habitat, i = 1, ..., 32
d, = mean of the d,,
D,, = for study area i, the average distance from

randomly selected points in ‘‘other’’ habitat to
the edge of the closest patch of good habitat,
i=1,...,32

D, = mean of the D,..

The quantity D, was estimated using 1000 randomly
selected points for each study area. We used a one-
tailed ¢ test to determine whether d, — D, was signif-
icantly less than 0.0.

Correlation between number of territories and
amount of good habitat.—The 1995 surveys yielded
an estimate of the number of territories present in each
study area. If the habitat models were performing well,
then these estimates should show significant positive
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correlations with the amount of good habitat in the
areas. The 30-ha areas were fairly uniform, so we di-
vided each one into four 7.5-ha subplots and calculated
correlations based on the resulting 128 subplots. When
territories extended across the subplot boundaries, we
estimated the proportion of the territory within a sub-
plot to the closest fourth and recorded the ‘‘number
present”” accordingly (i.e., allowable values were mul-
tiples of 0.25). The subplots were not independent, so
we used a bootstrap (Efron and Tibshirani 1993: Sec-
tion 14.4) based on the 32 primary sampling units (i.e.,
study areas) to obtain standard errors of the correlation
coefficients. A one-tailed ¢ test was then used to de-
termine whether the correlation between number of ter-
ritories and proportion of the area delineated as good
habitat was greater than 0.0.

RESULTS
Model development

The habitat models developed from the 1994 data
indicated that Acadian Flycatchers (Fig. 3A) and
Worm-eating Warblers primarily utilized stream bot-
toms and ravines, which have concave land surfaces
and high moisture levels (Table 1). These two species
were quite restricted in the microhabitats they used and
could be considered habitat ‘‘specialists’ at this level.
We use the term ‘‘microhabitat” to indicate finer scale
areas (e.g., territories or home ranges) than that of a
general vegetation association or habitat type, equiv-
alent to Johnson’s (1980) second-order habitat. Ov-
enbirds, Red-eyed Vireos (Fig. 3B), and Wood Thrush-
es were widely distributed, commonly occurred on hill-
sides, and were the most general in their microhabitat
preferences. Typically, they were found in mid-slope
areas where slopes were relatively steep and moisture
levels were intermediate (Table 1). Hooded Warblers
and Eastern Wood-Pewees (Fig. 3C) were characterized
as hilltop species associated with the dry moisture con-
ditions and convex land forms of ridges (Table 1). Ce-
rulean Warblers (Fig. 3D) and Scarlet Tanagers were
also associated with convex land surfaces, although
they were not commonly found on the very tops of
ridges. Scarlet Tanagers were typically in slightly more
moist and less steep areas, whereas Cerulean Warblers
tended to occupy drier and steeper sites (Table 1).

Model performance

Satisfying the constraint.—For six of the nine spe-
cies, p, > 0.7; for three species, p, was slightly, but
not significantly (P > 0.05), less than 0.7 (Fig. 4). The
models thus performed well in satisfying the constraint
that p, should not be significantly less than 0.7.

Comparison with a random model.—The difference
Po — P, was significantly (P < 0.05) greater than 0.0
for all nine species (Fig. 4). For all of the species except
Ovenbird and Red-eyed Vireo, the difference was
greater than 0.10. The difference for the Acadian Fly-
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F1G. 3. Models of Acadian Flycatcher (A), Red-eyed Vireo (B), Eastern Wood-Pewee (C), and Cerulean Warbler (D)
habitat for one of the test plots in the Raccoon Ecological Management Area. Dark gray shading indicates good habitat, as
delineated by the model. White dots indicate locations of individuals of the respective species observed during territory
mapping surveys. The figures represent standard topographic maps, with black lines marking 20-foot (6.1-m) elevation contours
as generated from digital elevation model data. The white crosses indicate cardinal directions, with north noted by N.

TaABLE 1. Definitions of good habitat for the nine bird models developed in this study.

Species Definition¥

Acadian Flycatcher (29 = imi = 72 or curv < 1 or slope < 40) and morph = concave and landcov = forest

Cerulean Warbler ((morph = convex and 27 > imi > 52) or 35 < slope = 61)and (9 =fa=450r -3 =
curv = 1) and landcov = forest

Eastern Wood-Pewee (slope < 46 or —2 = curv = 5) and morph = convex and (morph = convex or imi < 62)
and landcov = forest

Hooded Warbler (morph = convex and curv > —1) or slope > 50) and landcov = forest

Ovenbird (imi < 42 or (—1 = curv = 11 and slope > 30)) and landcov = forest

Red-eyed Vireo 31 < slope = 59 and —1 = curv = 4 and 9 = fa = 90 and landcov = forest

Scarlet Tanager (slope < 38 or imi > 52) and —1 = curv =< 7 and landcov = forest

Wood Thrush (9 = fa =45 or 38 = imi = 64) and slope > 27 and landcov = forest

Worm-eating Warbler ((35 = slope = 44 and curv < 1 and 9 = imi = 61) or morph = concave) and landcov =

forest

+ Abbreviations are as follows: imi, integrated moisture index score; curv, percentage surface curvature; morph, surface
morphology (concave or convex); landcov, land cover type (forest or nonforest); fa, water flow accumulation.
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Fic. 4. Comparison of the proportion (mean * 1 SE) of
the bird observations occurring in good habitat (open bars)
with the proportion (mean = 1 SE) of a study area delineated
as good habitat by the model for each species (solid bars).
Proportions differed (P < 0.05) for all species. Species codes
are given in Methods: Study area and species.

catcher and Worm-eating Warbler models was greater
than 0.20, indicating that these models were particu-
larly effective. Development of highly predictive mod-
els was much easier for these microhabitat specialists
than for other species, such as Red-eyed Vireo, that
were not as restrictive in the microhabitats that they
used.

Distances to preferred habitat—The difference d,
— D, (see Methods, Distances to good habitat) was
significantly (P < 0.05) less than 0.0 for all of the
species except Wood Thrush (Table 2).

Correlation between number of territories and
amount of good habitat.—The correlation between
number of territories and proportion of good habitat in
a study area was positive for all species and signifi-
cantly (P < 0.05) greater than 0.0 for all species except
Hooded Warbler, for which it was marginally signifi-
cant (Table 3).

DiscussioN
Model evaluation

The models developed in this study passed several
tests designed to evaluate model performance. Good
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habitat, as defined by the model, included >70% of the
bird observations. The proportion of observations in
good habitat was larger than the proportion of the study
area delineated as good habitat. Observations outside
of good habitat, as delineated by the model, tended to
be closer to good habitat than would occur by chance.
The correlation between number of territories and
amount of good habitat was generally positive. The
models thus provided more information than, for ex-
ample, use of the survey data alone without habitat
information, or use of a randomly constructed habitat
model.

Three products of practical use can be obtained from
the models: (1) maps delineating good habitat for the
species, (2) an estimate of the amount of good habitat
within the area of interest, and (3) an estimate of the
number of territories within that area. These products
could be used in evaluating alternative management
plans by determining which of the plans might result
in the elimination of important habitat or an unac-
ceptably large number of breeding territories. The ter-
ritory density estimates from our models would not be
highly precise, as indicated by the low correlations for
some of the models, and would thus have to be used
with extreme caution. Models involving many param-
eters, such as the ones developed in this study, should
not be applied to areas outside of southeastern Ohio
without testing the models on a data set from the new
area, In many cases, however, approximately the same
model may suffice, so that model development might
be relatively easy.

Although our models clearly performed better than
a random model, they generally did not identify small
proportions of the study area that contained large pro-
portions of the target species. Also, the correlations
between number of territories and amount of good hab-
itat were quite low for some of the species, indicating
that only a small amount of the variability in territory
densities was associated with the predicted amount of
good habitat. Many factors not accounted for in our
models (e.g., food availability, interspecific competi-
tion, predator abundance) are likely to affect avian den-
sity (Wiens 1989), and thus it is not surprising that our
correlations were low. This has been true in many other
studies. For example, Morrison et al. (1987) developed

TaBLE 2. Distance in meters (mean = 1 SE) from observed locations and random points to
the nearest patch of good habitat. A one-sided ¢ test was used to determine whether the mean
for the observations was significantly less than the mean for the random points.

Species Observations Random points Difference df P
Acadian Flycatcher 12.3 (0.9) 22.4 (0.9) —10.1 27 <0.01
Cerulean Warbler 15.0 (1.4) 18.0 (0.4) -3.0 30 <0.01
Eastern Wood-Pewee 17.3 (1.8) 22.4 (0.4) -5.1 23 <0.01
Hooded Warbler 17.2 (1.1) 20.9 (0.4) -3.7 31 <0.01
Ovenbird 15.5 (1.1) 17.5 (0.6) -2.0 29 <0.05
Red-eyed Vireo 15.8 (1.0) 17.4 (1.0) -1.6 31 <0.05
Scarlet Tanager 11.2 (0.7) 12.5 (0.2) -1.3 34 <0.05
Worm-eating Warbler 16.4 (1.5) 19.7 (1.0) -3.3 45 <0.01
Wood Thrush 17.9 (1.5) 17.8 (1.1) 0.1 28 >0.05
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TaBLE 3. Correlation (r) between predicted amount of good
habitat and observed number of territories. P values are for
one-sided 7 tests used to determine whether the correlation
coefficients were greater than zero (n = 32 for all). Standard
errors were calculated through a bootstrap analysis.

Species r 1 seof r P
Acadian Flycatcher 0.412 0.084 <0.001
Cerulean Warbler 0.332 0.100 0.001
Eastern Wood-Pewee 0.294 0.092 0.002
Hooded Warbler 0.155 0.092 0.051
Ovenbird 0.376 0.105 <0.001
Red-eyed Vireo 0.373 0.101 <0.001
Scarlet Tanager 0.241 0.103 0.013
Worm-eating Warbler 0.175 0.098 0.042
Wood Thrush 0.415 0.098 <0.001

regression models to predict avian density and found
that, in 15 of 21 models, the r? values were <0.15. On
the other hand, models are sometimes much more suc-
cessful at identifying small areas in which the target
species are concentrated. For example, Knick and Dyer
(1997) used their habitat model to identify 20% of the
study area that contained 80% of the observed indi-
viduals.

At least three reasons might account for the failure
of a model to delineate a small fraction of the study
area containing a large proportion of the animals. First,
the most important variables may not be identified, or
they may not be combined in the best manner. This is
clearly an inadequacy of the model. We doubt that any
simple way of investigating this possibility exists, but
consideration of the species’ natural history will often
provide some indication of how reasonable the models
are. Second, the sample size of observations may be
too small. With a larger sample, a better model might
be derived. This is essentially a design problem, al-
though one that may be unavoidable because of prac-
tical and logistical constraints. Precision of the models
in relation to sample size could probably be investi-
gated with bootstrapping techniques, although we did
not do this. Third, the animals may occur more or less
uniformly throughout most of the study area. This sit-
uation makes it impossible to delineate small fractions
of the study area that include large fractions of the
animals. For example, the models that we presented in
this paper were attempts to delineate microhabitats
within an appropriate general habitat type covering
large portions of the study areas. Thus, it was not sur-
prising that species without highly specific microhab-
itat preferences were fairly uniformly distributed
throughout the study areas. When such a situation oc-
curs, we suggest that if a model seems reasonable and
sample sizes seem large enough, then results indicating
that a large proportion of the study area is required to
account for a large proportion of the observations
should be viewed as supporting a null hypothesis that
most of the area really is good habitat. In the absence
of falsification by future modeling work, the model
should not be viewed as having performed poorly, but
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rather as having revealed the useful finding that equally
good habitat occurs throughout much of the study area.
The management implication of such a finding is that
no particular portions of the area are considerably bet-
ter than others. In our study, we would reach this ten-
tative conclusion for Ovenbird, Red-eyed Vireo, Scar-
let Tanager, and Wood Thrush.

Ecological implications of the study

In addition to providing products of direct practical
use, the modeling approach developed here may reveal
new information about ways in which environmental
variables affect habitat quality for the target species.
In our study, variables describing land cover, topog-
raphy, and moisture provided the basis for modeling
microhabitats for several species of forest-breeding
songbirds. For forest-breeding birds in the lower Mid-
west and southern Appalachians, topography and mois-
ture are important in determining ecological conditions
critical to defining microhabitat preferences of these
species. Topography and moisture gradients can strong-
ly influence the composition and structure of the plant
community in a particular location (Carmean 1965,
Host et al. 1987) and are useful in demarcating eco-
logically meaningful boundaries important in deter-
mining plant distributions and forest composition
(Franklin 1995, Iverson et al. 1997). The structure and
composition of the plant community can, in turn, be a
critical factor in defining where preferred microhabitat
occurs for a particular bird species (MacArthur and
MacArthur 1961, Recher 1969, Rotenberry and Wiens
1980).

Some authors suggest that abiotic environmental
variables, in addition to vegetation structure and com-
position, are likely to improve the accuracy of wildlife
habitat descriptions (MacArthur and Wilson 1967,
Willson 1974, Roth 1976). Environmental moisture has
been suggested as an important direct determinant of
microhabitat preferences of some birds (Odum 1950,
Bertin 1977, Kendeigh and Fawver 1981) and of bird
species diversity in some communities (Smith 1977,
Swift et al. 1984, Petit et al. 1985). Thus, the habitat
components represented by the abiotic variables used
in this study might directly influence habitat prefererice
by providing some of the cues that birds use for se-
lecting preferred habitats. These abiotic variables also
have a critical and strong indirect influence through
their importance in defining plant community compo-
sition and structure. This is very important when de-
tailed, remotely sensed data on specific vegetation
types are not available, as was the case for our study.

Another implication of our study is that detailed data
on plant species composition or structure may not al-
ways be needed to construct useful predictive models.
This is fortunate, because such detailed information on
the vegetation is seldom available for large areas, and
models based on detailed vegetation information usu-
ally cannot be extrapolated to regional levels.
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Comments on the analytic approach

Three features of the approach used in this study
may warrant consideration. First, the general criterion
for defining good habitat was maximization of the dif-
ference between proportion of the observations in good
habitat and proportion of the study area delineated as
good habitat. This criterion is somewhat similar to cri-
teria used in some multivariate methods (e.g., discrim-
inant analysis, which maximizes ‘‘separation” of two
groups), but it is by no means identical to the criteria
used in these methods. None of these multivariate
methods could be used simply, without modification,
to carry out our analysis.

Second, in defining good habitat, we used ranges for
each underlying variable along with the Boolean op-
erators ‘“‘and” and ‘“‘or.”” If we had used only ‘“‘and,”
then the form of the definition would have been a linear
combination in which the coefficients were 1 if the
habitat variable was in the specified range and 0 oth-
erwise. Use of the operator ‘“or”” and parentheses to
form groups seems to preclude any simple mathemat-
ical method for identifying the best definition of good
habitat, which is unfortunate. However, our method of
construction does enable the definition to capture rel-
evant ecological information, particularly pertaining to
resources that substitute for one another, in ways that
the linear combinations generally used in statistical
methods cannot.

Third, we used one particular algorithm to search for
the best model, but many others can be imagined. A
more formalized algorithm, soundly based on mathe-
matical theory, would provide an improvement in this
area of the analysis.

A comparison of our method with the approach based
on the Mahalanobis distance may be of interest, because
the Mahalanobis method is the most commonly used of
only a few modeling methods that, to our knowledge,
are applicable for use with presence data. The Mahal-
anobis method has been used to provide a continuous
measure of relative habitat quality, rather than to delin-
eate good habitat. Good habitat could easily be delin-
eated from this method, however, simply by establishing
a threshold value. Our method utilized a threshold value
and delineated good habitat, but it did not provide a
continuous measure of habitat quality. We are unsure
exactly how a continuous measure should be derived
from our method. A single value could easily be obtained
for each habitat variable (e.g., the midpoint of the ranges
we used), but use of the “‘or”” operator in defining good
habitat is integral to our method and does not lend itself
very well to a single description of optimal habitat. An
approach could certainly be devised, but might be com-
plex. Thus, the Mahalanobis method may be more gen-
eral than the approach we developed.

The Mahalanobis method pre-selects a definition of
optimal habitat (a multivariate vector of the means for
the habitat variables), whereas our approach permits
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great flexibility in defining good habitat. One aspect of
the flexibility in our method that we like is the ability
to identify resources that substitute for each other. Nei-
ther the Mahalanobis method, nor any of the multivariate
methods that we are aware of, allows this degree of
flexibility in defining good habitat. We also believe that
the flexibility in defining the p; > ¢ threshold is a benefit
in terms of developing models to suite different appli-
cations. Determining the amount of habitat or the pro-
portion of a population to be targeted for management
or conservation requires consideration of numerous
complex issues (e.g., biology, economics, societal value
judgments), which will vary between situations (Shaffer
1987). The value of ¢ should thus be selected to fit the
context of the situation for which the model is being
developed (e.g., resource planning, conservation appli-
cations) and the biology of the target species.

Our method does provide a means for comparing the
relative ““fit”” of different models through the quantity
(p, — P,). This measure is not statistically formalized,
but it does provide a means of evaluating model per-
formance based on the original data set. We are un-
aware of any methods for assessing the relative fit of
different models developed through the Mahalanobis
distance method. Additionally, our method of compar-
ing CDFs to identify the range in values to be used for
a given variable might be more appropriate for cases
in which the distributions of the predictor variables are
not unimodal or normal. Our method seeks to maximize
the quantity (p;, — P,) for each variable, regardless of
the variable’s distribution. Mahalanobis distance mod-
els are a function of the differences between the means
and observed values of the variables in the model as
well as the covariance matrix for the variables. Thus,
oddly shaped (e.g., bimodal, highly skewed) distribu-
tions could cause the Mahalanobis method to inappro-
priately categorize habitat quality, as the properties of
the Mahalanobis function are best known under con-
ditions of multivariate normality.

Development of habitat models that use presence
data is at an early stage. Other methods can probably
be produced. In particular, to our knowledge, no stat-
istician has yet published on the issue, so it is possible
that methods based more extensively on existing mul-
tivariate techniques can be developed. Developing
methods that make optimal use of biological insights,
but that also take full advantage of statistical methods,
is probably the next step in this line of inquiry.
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