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Abstract We conducted simulations that estimated power and Type | error rates of statistical tests
for detecting trends in raptor population count data collected from a single monitoring
site. Results of the simulations were used to help analyze count data of bald eagles (Hali-
aeetus leucocephalus) from 7 national forests in Michigan, Minnesota, and Wisconsin
during 1980-1989. Seven statistical tests were evaluated, including simple linear regres-
sion on the log scale and linear regression with a permutation test. Using 1,000 replica-
tions each, we simulated n = 10 and n = 50 years of count data and trends ranging from
-5 to 5% change/year. We evaluated the tests at 3 critical levels (@ = 0.01, 0.05, and
0.10) for both upper- and lower-tailed tests. Exponential count data were simulated by
adding sampling error with a coefficient of variation of 40% from either a log-normal or
autocorrelated log-normal distribution. Not surprisingly, tests performed with 50 years of
data were much more powerful than tests with 10 years of data. Positive autocorrelation
inflated a-levels upward from their nominal levels, making the tests less conservative and
more likely to reject the null hypothesis of no trend. Of the tests studied, Cox and Stuart’s
test and Pollard’s test clearly had lower power than the others. Surprisingly, the linear re-
gression t-test, Collins” linear regression permutation test, and the nonparametric
Lehmann’s and Mann’s tests all had similar power in our simulations. Analyses of the
count data suggested that bald eagles had increasing trends on at least 2 of the 7 national
forests during 1980-1989.
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A fundamental question in monitoring abun-
dance of species is whether a species is increasing
or decreasing in population size over an area dur-
ing a given time. We expect a stable population
size if the population is not changing. Stability,
however, does not necessarily mean constancy,
rather that the probability distribution of popula-
tion sizes is constant or stationary over the period
of interest.

Researchers have developed methods to test the
hypothesis of stability by analyzing counts, signs, or
other indices of population size collected systemati-
cally at monitoring sites over several years. Route-re-
gression analysis, developed by Geissler and Noon
(1981), uses analysis of covariance on the log scale to
control for observer effects and uses bootstrapping
to produce significance levels. Route-regression per-
forms well as a statistical method under a variety of
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circumstances (Geissler 1984, Geissler and Link
1988) but requires numerous monitoring sites. It is
widely used to estimate large-scale, continental, and
state population trends for the North American
Breeding Bird Survey (Droege 1990, Geissler and
Sauer 1990).

In many cases, however, monitoring the relagive
abundance of a species occurs at only 1 or several
small-scale sites over n sample periods of interest. If
the number of sample periods is large, time-series
analysis probably is most appropriate for analyzing
population count data collected at a single site because
it can adjust for autocorrelation among the counts
(Jassby and Powell 1990, Barker and Sauer 1992). Pos-
itive autocorrelation (also called serial correlation) is
found frequently in raptor and other biological count
data because repeated measurements over time are
collected from the same sampling areas and vital rates
can be correlated from 1 period to the next (Pendleton
1989, Burgman et al. 1993). Autocorrelation generally
arises because the area of interest is not surveyed at
random each year. For economic or logistic reasons,
the same site or route often is surveyed from 1 year to
the next, even though the goal is to estimate trends for
a larger area of interest. Although time-series analysis
may be best for these data, it is rarely used for raptor
count data because of insufficient data, violations of as-
sumptions, and difficulty of the analysis.

Titus et al. (1989) reviewed methods to analyze
raptor count data collected at several sites in the east-
ern United States and made recommendations to re-
duce the likelihood of incorrect conclusions con-
cerning trend. Methods proposed for analysis of
count data include linear regression of the natural
logs of the counts versus time (Gerrodette 1987), lin-
ear regression with a permutation test (Collins 1990),
a ttest and a permutation test based on first and last
counts (Pollard et al. 1987, Link and Hoover 1991),
and 3 nonparametric tests (Mann 1945, Lehmann
1975, Conover 1980).

Thus, at least 7 methods with a variety of statistical
assumptions are available for resource managers to
analyze count data. The relative performance of
these trend tests, in terms of Type I and Type Il error
rates under realistic conditions, has not been widely
investigated. A Type I error occurs if a trend is found
in the sample data when in fact the true population
count distribution had no trend over the time stud-
ied. A Type II error occurs if no trend is found when
a trend actually existed in the true population counts.
The power of a statistical trend test, defined as the
probability of correctly concluding that a trend in the
count data exists, is equal to 1 minus the Type I er-
ror rate.

Biologists recognize the importance of calculating
the power of statistical tests to detect trends in data
from ecological studies, yet rarely is it calculated
(Temple and Wiens 1989, Peterman 1990). Ger-
rodette (1987) provided a power analysis for linear
regression in his paper, but incorrect assumptions in-
validated his results (Link and Hatfield 1990). Several
other researchers published power or related analy-
ses for biological surveys, but these analyses are not
necessarily relevant to raptor studies (Eberhardt
1978, de la Mare 1984, Harris 1986, Kendall et al.
1992, Green and Young 1993, Taylor and Gerrodette
1993).

We report on simulations estimating power and
Type I error rates of various trend tests for both inde-
pendent and autocorrelated raptor count data and
evaluate the merits of these tests for estimating
trends in raptor populations. Furthermore, using the
trend tests described above, we analyzed counts of
bald eagles (Haliaeetus lewcocephalus) from 7 na-
tional forests of the Eastern Region of the U.S. De-
partment of Agriculture Forest Service (USFS) sur-
veyed during 1980-1989 (Marita 1989). Data were
collected systematically by the USFS using aerial sur-
veys of bald eagle nests in Chequamegon and Nicolet
(Wis.), Chippewa and Superior (Minn.), and Hi-
awatha, Ottawa, and Huron-Manistee (Mich.) Na-
tional Forests. Two non-random surveys, each exam-
ining all known eagle territories, were conducted
each year in each national forest: 1 verified occu-
pancy of bald eagle nests in early spring (Fig. 1a), and
1 determined the success (productivity) of the same
nests (Fig. 1b) in late spring or early summer (Fraser
et al. 1983).

We chose 1980-1989 for our analyses because ob-
server effort within each forest was thought to have
been relatively constant during this period, following
survey improvements stimulated by comments on
survey inconsistencies by Mattson and Grewe (1976).
Constant observer effort is important because
Geissler and Noon’s (1981) route-regression analysis
found observer covariates to be a significant cause of
bias in bird surveys (Geissler and Sauer 1990).

Four summary statistics (Table 1) are relevant to
the trend tests applied to the bald eagle occupancy
and productivity data shown in Fig. 1. The percent
rate of increase for these data can be defined in sev-
eral ways, of which we chose 2: as r; = 100(e¥*"° - 1),
where the slope is that obtained from a linear regres-
sion of the log counts versus time; and as a function
of the (n - 1) root of the ratio of the last and first
counts, yielding », = 100([Cy,/Cg]Y? - 1), a statistic
derived from the Pollard et al. (1987) t-test where Cy,
and Cg, are the counts for 1980 and 1989, respec-
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Fig. 1. Number of occupied (A) and successful (B) bald eagle nests
in 7 national forests in Michigan, Minnesota, and Wisconsin,
1980-1989.

tively. Similarly, the coefficient of variation can be
calculated in at feast Z ways: as CV, = 100([eM" -
11%), which assumes normality of the regression
residuals of log counts versus time and where MSE is
the mean square error of the regression line; and as
CV, = 100(SD/x), where SD is the standard deviation
of the counts and the mean is the arithmetic average
over the 10 counts.

Trend tests

Each of the statistics we consider tests the same
null hypothesis of no trend in the counts (H,: » = 0),
where 7 is some measure of growth rate such as per-
cent rate of increase, versus alternative hypotheses of
either a positive or negative trend in the counts (H_: »
>0 or H,: 7 <0, respectively). The tests programmed
for our simulations are described below.

Simple linear regression on the natural log
scale (Gerrodette 1987). The usual regression -
test with 7 - 2 degrees of freedom tests whether the
slope differs from 0 of the line fitted to the natural log

of the counts versus time. This test assumes the re-
gression residuals are independent and have a normal
distribution. Eberhardt and Simmons (1992) also ad-
vocated linear regression on the log scale for study-
ing trends in animal populations, but they did not
provide a power analysis.

Simple linear regression with a permutation
test (Collins 1990). This test uses simple linear re-
gression on the natural log scale with a permutation
procedure to test for significance (Collins 1990). A
permutation test can be constructed for many statistics
and assumes only that the sample counts are indepen-
dent and identically distributed random variables. The
permutation test is also known as a randomization test
(Manly 1991), but we reserve this terminology for an-
other process (see below). To construct a permutation
test, one randomly reorders or permutes the data many
times (e.g., 999 in our simulations) and compares the
observed test statistic to the percentiles of the distribu-
tion of statistics generated by the permutation proce-
dure to obtain the significance level for the observed
statistic. Although we programmed our own permuta-
tion tests, note that Manly (1991) is the companion
book to software that can perform permutation tests
for linear regression and other types of analyses.

Pollard’s test (Pollard et al. 1987) as modi-
Jied by Link and Hoover (1991). This statistic is
defined as:

w2 logG,, — logC,,
n—1 ’

\/ 2QogC, — logC, ) — dlogC,, — logG, "
n— D
where C.w = count for year i, i= 1,2,...,7.

Assuming normality and independence of the differ-
ences between successive log counts, Link and Hoover
(1991) showed that this statistic has a f-distribution with
n - 2 degrees of freedom. Pollard et al. (1987) incor-
rectly concluded that a simpler version of this statistic
had a #distribution with 7 - 1 degrees of freedom. This
ttest requires the years () to be spaced equally apart
but the statistic can be modified if they are not.

Pollard’s test (Pollard et al. 1987, Link and
Hoover 1991) with a permutation test. This test
uses a permutation procedure as discussed above
and, like the nonparametric tests below, does not re-
quire any normality assumptions.

Mann’s trend test (Mann 1945). This statistic is
defined as:

2 G, <G,

i<j

Z,j=1,2,...,n, where [ is the indicator function, taking
the value 1 if the quantity within the parentheses is
true, and O if false. This statistic totals the times each



Table 1. Percent rate of increase (r;, r,) and coefficient of variation (CV,, CV,) for the number of occupied and successful bald eagle
nests in 7 national forests in Michigan, Minnesota, and Wisconsin, 1980-1989.

Occupied nests

Successful nests

National forest r? cvy re CV,? r v, n cv,
Chequamegon 1.9 12.9 2.4 136 3.4 14.5 2.7 16.2
Chippewa 7.1 6.0 7.1 21.9 5.7 5.8 5.1 18.0
Hiawatha 12.4 13.5 11.9 39.8 6.0 38.3 5.8 44,2
Huron-Manistee 2.7 15.0 3.8 17.3 7.7 16.8 6.7 28.2
Nicolet 0.9 12.4 -0.6 12.0 4.5 16.8 4.6 21.6
Ottawa 1.5 10.2 2.7 10.7 0.7 23.6 3.7 236
Superior 8.1 25.7 8.2 33.6 8.7 40.9 9.2 40.4

1, = 100(e%°"° — 1), where slope is obtained from a linear regression of log counts versus time.
® CV, = 100([e" - 11", which assumes normality of the regression residuals of log counts versus time and where MSE is the mean

square error of the regression line.

€1y = 100([Cao/Caol ™ - 1), a statistic derived from the Pollard et al. (1987) t-test where Cy, and Cy are the counts for 1980 and 1989,

respectively.

4 CV, = 100(SD/X), where SD is the standard deviation of the counts and the mean is their arithmetic average over the 10 counts.

later count is greater than each earlier count. It is
large for increasing trends and small for decreasing
trends.

Lebmann’s trend test (Lebmann 1975). Similar
to Mann’s trend test, Lehmann’s (1975) statistic is de-
fined as:

D, (j — DIC, <C)).

i<j

This statistic weights the pairwise comparisons rel-
ative to the number of sample periods between
them.

Cox and Stuart’s trend test (Conover 1980).
This statistic is defined as:

m

2 LG, <G, D

i=1
wherec=n/2andm=cifnisevenandc=(n + 1)/2
and m = ¢ - 1 when 7 is odd. The middle count is riot
used when n is odd. Ties between counts are
dropped from the data set, and m and ¢ are adjusted
accordingly.

Simulation methods

Our simulations were performed using the GAUSS
programming language (Edlefsen and Jones 1986).
Population growth and decline were assumed to be
exponential with a rate of increase or decrease spec-
ified by r = 0, 1, 2, 3, 4, or 5% change/year. These
values were chosen because they were thought to
be similar to actual yearly population change that
USFS managers would be interested in. detecting.

We assumed a log-normal sampling error distribu-
tion for the population counts with a coefficient of
variation (CV) of 40%. This variability was supported
by literature (Titus et al. 1989) and was verified in
this study as a maximum (conservative) estimate for
the variability in bald eagle surveys. Variability was
added to the simulated counts by incorporating log-
normally distributed sampling errors in the counts
using the exponential model C, = C,(1+n", i =
1,2,...n.

Two models were used for the sampling error dis-
tribution. The first assumed independent errors from
year to year while the second assuimed posiiively au-
tocorrelated errors. Researchers usually assume in-
dependence of year-to-year counts or regression
residuals when population trend statistics are com-
puted for an individual area (e.g., Titus and Fuller
1990, Wilson 1991), but this assumption is expected
to make the tests less conservative (more likely to re-
ject H). This is because positive autocorrelation is
expected to inflate the a-levels of the statistical tests
since the sampling variance can be seriously under-
estimated (Neter and Wasserman 1974, Barker and
Sauer 1992). The positive autocorrelation was added
to the errors in our simulations by assuming a
Toeplitz format of the autocorrelation matrix (i.e.,
counts 7 years apart have an autocorrelation of 0.5*%),
This is a relatively high level of year to year serial cor-
relation.

We simulated # = 10 and # = 50 years of count
data. The a-levels of the nonparametric tests, which
have discrete probability distributions, were adjusted
to the nominal a-level using a randomization test



(Hogg and Craig 1978:255). Three nominal a-levels
(e = 0.01, 0.05, and 0.10) were tested with 1-tailed
tests for each statistic. We performed 1,000 repli-
cates of each simulation for each of the combinations
of years, a-level, and growth rate. For tests requiring
a permutation procedure (Collins’ linear regression
and Pollard’s test), 999 random permutations of the
data were performed for each simulation to make it
easier to calculate the percentiles for the permuta-
tion tests in each simulation. For statistics in the sim-
ulations that required the log of the count be calcu-
lated, 0.5 was added to each count before the test so
that 0 counts could be included. Note that this con-
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stant was not added to the USFS eagle count data; be-
cause 0 counts never occurred in those data sets, the
natural log of the count could always be computed.
The estimated Type I error rate of a test statistic for
a given combination of number of years monitored, er-
ror distribution, and nominal a-level is the proportion
of rejections of H, out of 1,000 simulations when the
expected growth rate is # = 0. This estimate has a stan-
dard error associated with it from which confidence
levels can be attached to the estimated error rate. This
standard error is estimated with the usual binomial
variance formula (Link and Hatfield 1990). The esti-
mated power of a test statistic for a particular combi-
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Fig. 2. Estimated power and Type | error rates of 6 statistical tests
used for detecting a trend in 10 years of independent, exponen-
tially increasing, log-normally distributed sample counts, with a
coefficient of variation of 40%, and a = 0.01 (A), a = 0.05 (B),
and @ = 0.10 (). The Type | error rate is the power at a trend of
0, although it is only approximately the nominal level because of
sampling error introduced by the simulations.
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nation is the proportion of rejections out of 1,000
replicates for a given expected percent growth rate (»
= 0).

Comparing the power curves of each test allows
the manager to decide which test is preferred for an-
alyzing raptor data; in our case, the USFS bald eagle
count data. In addition, comparison of the tests can
be facilitated by computing each test statistic’s signif-
icance level for the actual bald eagle data to verify
concordance of conclusions among the tests. For the
bald eagle data, however, we never can know the
“truth” (i.e., actual population trend), only estimates
of it. The simulation results, therefore, are the best
way to compare the relative performance of the
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Fig. 3. Estimated power and Type [ error rates of 6 statistical tests
used for detecting a trend in 50 years of independent, exponen-
tially increasing, log-normally distributed sample counts, with a
coefficient of variation of 40%, and @ = 0.01 (A), & = 0.05 (B), and
a =010 (0.

trend tests because we define the true values of the
population parameters.

Results and discussion

For the USFS eagle nest occupancy data (Fig. 1a),
the rate of increase #, of the counts on the 7 national
forests ranged from 0.9% to 12.4% with a mean of
4.9%; r, ranged from -0.6% to 11.9% with a mean of
5.1% (Table 1). For the success data (Fig. 1), 7,
ranged from 0.7% to 8.7% with a mean of 5.3%, and r,
ranged from 2.7% to 9.2% with a mean of 5.4% (Table
1). Based on these results, the range of » values used in
the simulations was appropriate for evaluating the
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power of the trend tests applied to these USES eagle
data.

The estimated coefficients of variation reported in
Table 1 ranged from 5.8% to 44.2%. Because we used
a coefficient of variation of 40% in our power simula-
tions, these simulations represent a conservative or
minimum estimate of power of the trend tests for
bald eagle count data because most of the USES bald
eagle data had coefficients of variation less than 40%.
For any of the trends with a coefficient of variation
less than 40%, the power of the tests will actually be
greater for detecting trends in the bald eagle data.

The power curves for our simulations are graphed
in Figs. 2-5 for the upper-tailed tests (for positive or
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Fig. 4. Estimated power and Type | error rates of 6 statistical tests
used for detecting a trend in 10 years of autocorrelated, expo-
nentially increasing, log-normally distributed sample counts,
with a coefficient of variation of 40%, and @ = 0.01 {A), « = 0.05
(B), and a = 0.10 ().

increasing trend). The lower-tailed tests (for negative
or decreasing trend) had power curves neatly identi-
cal to Figs. 2-5 and therefore are not shown here.
We did not graph the power curves of the Pollard’s ¢
test. Since this ftest is based on the differences be-
tween log counts in successive years and these dif-
ferences are assumed to be independent, the way we
generated our data in these simulations violated one
of the assumptions of this test. In our study, counts
were assumed to be independent, but differences be-
tween counts were not, which generated negative
autocorrelation between the data points for Pollard’s
test, Consequently, the test almost never rejected
the null hypothesis for our simulated data and all the
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power curves were essentially 0. This test still might
be valid to use with real data, however, if assump-
tions are valid for that data. The permutation proce-
dure used with Pollard’s test corrects the problem
and is not affected by the dependencies in the suc-
cessive differences between log counts, allowing the
test to be evaluated properly.

As expected, tests performed with 50 years of data
(Figs. 3 and 5) were much more powerful than those
with 10 years of data (Figs. 2 and 4). Of the 6 tests
graphed, clearly Cox and Stuart’s test and Pollard’s
permutation test had lower power than the others.
Surprisingly, the linear regression #test, Collins’ linear
regression permutation test, Lehmann’s test, and
Mann’s test all had similar power. Linear regression
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Fig. 5. Estimated power and Type | error rates of 6 statistical tests
used for detecting a trend in 50 years of autocorrelated, expo-
nentially increasing, log-normally distributed sample counts,
with a coefficient of variation of 40%, and a = 0.01 (A), « = 0.05
(B), and @ = 0.10 (O).

should vield the most powerful test because it is the
likelihood-ratio test under the assumptions of our sim-
ulations (Neter and Wasserman 1974). Pollard’s test is
the likelihood-ratio test under the assumption of mul-
tiplicative errors in the counts (Pollard et al. 1987).
The effect of positive autocorrelation, as expected,
was to shift the a-levels upward from nominal a-levels.
The shift was not great: the nominal 0.01 level tests
had an average actual a-level of 0.07 (Figs. 4a and 5a),
the nominal 0.05 level tests had an average actual a-
level of 0.15 (Figs. 4b and 5b); and the nominal 0.10
level tests had an average actual a-level of 0.20 (Figs. 4¢
and 5¢). Inflation of the nominal a-levels is important
when testing autocorrelated data. With this relatively
high positive autocorrelation, the null hypothesis



Table 2. P-values of upper-tailed trend tests for increasing trends in the number of occupied bald eagle nests in 7 national forests in
Michigan, Minnesota, and Wisconsin, 1980-1989.

Simple Collins’
linear linear Pollard’s Pollard’s Mann’s
regression regression trend permutation trend Lehmann’s Cox & Stuart’s

National forest log scale permutation test test test trend test trend test
Chequamegon NS? NS NS NS NS NS 0.10
Chippewa 0.005 0.005 0.025 0.005 0.005 0.005 0.05
Hiawatha 0.005 0.005 0.05 0.005 0.005 0.005 0.05
Huron-Manistee 0.10 0.10 NS 0.025 NS NS NS
Nicolet NS NS NS NS NS NS NS
Ottawa NS NS NS 0.10 NS NS NS
Superior 0.025 0.025 NS 0.025 0.01 0.01 NS

2NS, not significant (P> 0.10). :Other P-values are upper bounds.

should not be rejected unless the chosen test is signifi-
cant at a < 0.01 so the true a-level is < 0.10. However,
given that an actual trend exists in the population, the
tests are more likely to reject the null hypothesis in fa-
vor of the alternative hypothesis than if the counts did
not show positive autocorrelation. Although it is not
appropriate to compare the power of tests with differ-
ent a-levels, the positive autocorrelation appears to
make the tests more powerful than their independent
counterparts at the expense of a higher Type I error
rate. If we set the nominal Type I error rate lower than
we usually would (e.g., o = 0.01), we can mitigate au-
tocorrelation in the counts and therefore achieve a rea-
sonable actual Type I error rate (e.g., o« < 0.10).

Survey and management
implications

Which test is best to use? Under our simulation as-
sumptions, the linear regression #-test should be the
most powerful test. Under other assumptions, Pol-

Table 3. P-values of upper-tailed trend tests for increasing trends
Michigan, Minnesota, and Wisconsin, 1980-1989.

lard’s #test or a nonparametric test could be more
powerful. Because the Collins’ linear regression per-
mutation test, Lehmann'’s test, and Mann’s test do not
assume normality of the counts, their regression
residuals, or the differences between successive log
counts, and because these tests were nearly as pow-
erful as the linear regression #-test in our simulations,
1 of these tests would be preferable for analyzing
count data in which the normality assumptions were
violated. Because a-levels shift upward from their
nominal values when positive autocorrelation exists,
we should choose a low nominal a-level to maintain
a reasonably small probability of Type I error. We do
not recommend concluding statistical significance
for count data unless the test statistic is significant at
a < 0.01.

When the 7 trend tests were applied to the bald
eagle nest occupancy and success data, none of the
lower-tailed tests found a decreasing trend in any of
the counts, implying that populations were either
stable or increasing (i.e., P > 0.10 for all lower-
tailed tests). In general, we concluded that regres-

in the number of successful bald eagle nests in 7 national forests in

Simple Collins’
linear linear Pollard’s Pollard’s Mann’s
regression regression trend permutation trend Lehmann's Cox & Stuart’s

National forest log scale permutation test test test trend test trend test
Chequamegon 0.05 0.05 NS? NS 0.10 0.025 NS
Chippewa 0.005 0.005 0.05 0.005 0.005 0.005 0.05
Hiawatha 0.10 0.10 NS NS NS NS NS
Huron-Manistee 0.005 0.01 NS 0.025 0.025 0.005 0.10
Nicolet 0.025 0.025 NS 0.05 NS 0.05 NS
Ottawa NS NS NS NS NS NS NS
Superior 0.05 0.05 NS 0.10 0.025 0.01 NS

*NS, not significant (P > 0.10). Other P-values are upper bounds.



sion residuals for both upper- and lower-tailed tests
were not different from normally distributed, but
power might be a problem with just 10 years of
data.

Most of the 7 upper-tailed trend tests of the actual
bald eagle data agreed fairly well in their conclusions
on trends. They tended to conclude there were in-
creasing trends (P < 0.01) for the number of occu-
pied bald eagle nests in Chippewa and Hiawatha
National Forests (Table 2) and for the number of suc-
cessful bald eagle nests in Chippewa and Huron-
Manistee National Forests (Table 3). Similarities and
differences among tests are useful to point out in Ta-
bles 2 and 3, but we reiterate that any conclusions
from these comparisons really only apply to these ea-
gle data and are not necessarily generalizable to other
data sets.

Collins’ linear regression permutation test was
almost always as powerful for these eagle data as
the usual linear regression #test. Since the per-
mutation test does not need to assume normality
of regression residuals, the permutation test
would be better to use if linear regression was the
chosen trend analysis. Pollard’s #-test and permu-
tation test were generally not as powerful as other
tests, similar to what was found in the simulations.
However, Pollard’s permutation test was always
more powerful for these data than Pollard’s f-test
and may be due to the assumption of indepen-
dence of counts versus independence of differ-
ences between successive counts, as discussed
above. Although not recommended in this case
due to lower power, if 1 of Pollard’s tests were
chosen for the trend analysis of these data, the
permutation test would be better because it was
more powerful.

Of the 3 nonparametric tests, Lehmann’s test
was always the most powerful test and thus would
be the best choice for analyzing these data if a
nonparametric test was chosen for the trend
analysis. Cox and Stuart’s test was the least pow-
erful of all 7 tests, except for occupied nests in
Chequamegon National Forest, for which it was
the most powerful test. Note that, for the Supe-
rior National Forest (SNF), Lehmann’s test was
more powerful than every other test and found in-
creasing trends (P < 0.01) on this forest.
Lehmann’s test was the most powerful test for
SNF because a change in survey design on this for-
est caused the counts in 1985 to be outliers. The
Boundary Waters Canoe Area Wilderness (con-
tained within SNF) was not surveyed in 1985 and,
in later years, was surveyed from ground and ca-
noe rather than by air. This biased the counts

downward for SNF for 1985-1988 (Fuller et al.
1995). Thus, the trends in bald eagle counts on
SNF were probably real but best evaluated with a
nonparametric test.
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