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INTRODUCTION

Disturbances, L"m-;h natural and nmhmpuﬁcnic. pro-

al extent. Freguer

in semiarid SYSICINS

new stable stai
)) . Tausch et al. 1993, Rietkerk and van
1997). Several studics in western North
“a have reported no significant recovery of var-

Ameri
ious ecosystem components afier one to several de-

cades of removal of the disturbance agent (McLean and
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an x;n nded mumlmmg strategy
onsumption

Campb«:!!
studies from the same region have
experiencing removal of disturbance can ex
nificant changes over both short and long time scales
m,i\ 1967,

1991, Knapp 1992), but other
found that systems

xhibit sig-

l)(}! maar ¢t al.

ponse o

h chang ceurs, and

GQ

how effcc(s Vary across H he
Unguiates are a disturbance agent that may directly
influence arid ecosysICms In NUMErous ways

dndscupc.

.including
consumption of plants, redistribution of nitrogen and
plant seeds via urination and defecation, trampling

vegetation, and compaction of soiis (Hobbs 1996, Bei

sky and Blumenthal 1997). Most studies mvesngatmg
effects of grazing by large mammals, especially feral
horses, have been performed at sites distributed over
relatively localized regions. Areas such as the Great
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ation may be even more pronounced for plint species

i:wo}vcd in thc interaction {Briw‘ke 1993,
3 ;md H Noy-Meir 1993}, Thes

rodd-se

K(:‘SL‘ archi in wesiermn

OF reeover mU arcas

often focuses attention on one or two {\ p s of nap(ms

fem mang

management at larger
whethes :
change in semiarid ecosystems. Although results from
various studies can be compared to infer how several

Ci

urbance pro

ecosystem components might react to a single tvpe of
disturbance (e.g.. Kauffman and Krueger 1984), dif-
ferent imental conditions among studies may
confound results and prevent the creation of a unified
;mdictiw model. Whercas monitoring and much re-

¢ investig
of grazing. we altempted to guantify the effects of nu-
merous grazing-refated disturbance processes listed at
the beginning of the previous paragraph.

Because of the complex environmental gradients pre-
sent within the Great Basin, a repeating sequence of
more than 200 distinet mountain ranges isolated by
numerous valleys (Hunt 1967, Fiero 1986, Grayson

1993), it is difficult to create a monitoring scheme ap-
propriate for assessing disturbance across broad spatial
scaies. As demonstrated by Brown (1971) and subse-
quent researchers (e.g., Lawlor 1998), even adjacent
mountain range complexes may contain different col-
lections of montane mammal species. This differenti-
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ate only defoliation-related effects
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In most field districts, managers
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1998, We t
horse-removed sites cou id be discrimi-

nated acroess broad “I.DE}HEH scales

¢ allernative moni

in evaluatis

the objectives of our rescarch were o) (i)
to what extent inherent site {(i.e., abiotic) d

Bbensin ey e
Gonelween

using commonly maoni
piant species only) with char-

sponse variables (“key
acterjzation using other data sets,

METHODS

We cotlected data at 17 sites incight mountain ranges
in western and central Nevada during 1997 and 19 sites
in nine ranges durmg 199 I, Fig. 1y, During
both years, sites were stratified into high {2000-2286
m) and tow (1340~-1700 m) du ations (herealter, “stra-
ta’’y, corresponding roughly to the lower and upper
sagebrush zones. Half of the sites i levational
stratum had horses removed for the s feral
horses had access to the remaining ("‘horsc~«>cwpied"}
sites since at teast 1971 (Table 1), Because horses were
known from aerial censuses to have used horse-occu-
pied sites during at least some seasons in some years
during the 3-8 yr before our sampling, we assumed
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that disturbance had occ ILd on these sites. Two lo
elevation, horse-removed sites were added in 1998,




s ateach

£8

of abt

Ioasuy

and ltocated within 1.0 km of ¢

5 that are of
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targe-bodied herbivores such as horses will affect eco-
systems. Thus, although at the finest scale we chose
sites that exhibited maximum homogeneity of big sage-
brush \w«,tdtmn and avoided steep sl()pv» {after sat-
criteria). variability in

selection

|\1\:rw ather
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depth o

bedrock, color of soils,
abundance of calcium carbo
> 1.8
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> ?m arca al

soil texture, and 1o

i
vation-treatment cat-
ments.
s;am;;lw of the upper _(, cm of soil
sites, one from cach quadrant of the trapping grld, and
dug soil pits to supplement information from NRCS
{Natur. rvation Service) soil surveys,
We also used species

“Nc col-

st alni e
xmu\hty

mmm{ shrub and grass

to further c‘xai’ix'
FiELD PROCEDURES
Vegetation
Sampling was conducted from May through August
in 1997 and 1998. To characterize vegetation; we used

eci

arass {(Bromus
v oindividuals, ¢

rdenid

a distance of 6. 4 mm into the soil surface (Bradford

1986, LISDA H'R,& Hard soif surf: n decrease
I marn-

mfiltration rates

I\;\"f(‘x

b ]
g &
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ing capacity, lower evapotranspiralion in near-su
horizons, or lower bulk density. Higher infiltration, in

can ocour as a result of changes in both soil and

Bcc;uwc penetration resistance

105 x'.x vited ility in preliminary sam-
pling, sampling sirategy at
| 3 measurements within

m of every
total of 250 subsampled measurements per site. Mea-
surement locations were offset from areas sampled in

frapping

previous years. All samples were taken in bare inter-
spaces {20 cm from shrub bases): values were dis-

carded and another reading was taken if the penetrom-
eter contacted a rock or shrub root. Although this dis-
turbance variable is abiotic, it is distinguished from the
data- set of “abiotic” inherent site characteristics by
being dynamic and vuinerable to trampling infiuences.
We trapped small mammals using a 10 X 10 trapping
grid with-a single 8 X 8 X 25 cm Sherman trap (Sher-
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High-elevation, hors
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sandy i
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AN /?":/\7 at cach station,
rows and colu 5 m. were |
cated within homogencous vegetation assemblages.

Trapping occurred for three consecutive rainless moht
at each site. We recorded species, sex, body mass (0.2
¢), trap station, and reproductive status of each animal,
and whether it had been captured previously.

We counted aboveground ant mounds within 2 m of
an imaginary line drawn along the rows of the trapping

1485 m undulatng strip

1d. which produced & 4 X
transect.  Although we
mounds {produced by Formicay and pebble mounds
(constructed mostly by Pogonomyrinex), we gave a val-
ue of 1 to cach mound.

encountered both  thatched

Assessment of recent grazing intensity at small

At each site, we assessed relative intensity of use by
le, horses, and all native ungulates by tallying fecal
piles within 2 m of the rows of the mammal-trapping
rid. To avoid overcounting instances in which an an-
imal defecated while moving across the site, cattle-
produced fecal piles <8 c¢m in diameter and horse-
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el wore not count

produced

COUNLS Sy : ent intensity of horse graz-
ing varied littie g

).2 dung pi%cﬁ; per site, mean * 1 sg). Although one
site heavily used by horses created greater variability
(96.4 = 38.8

exhibit con-

imong high-etevation sites (184.5 &

I intensity among low-elevation sites

ted, this site (T did not

sistent differences from other low-elevation sites in RA
g TWINSPAN anai

ANALYSIS
Dara sets

We characterized sites using five types of variables.

four, abiotic characteristics {e.g.. precipitation.
i i
plant species,

The first
elevation, soil erodibility), abundance by
percent cover by plant species, and percent cover of
plant species sampled by horse managers, are com-
monly used for monitoring. The Lfth type included
variables that have been shown by previous research
(Table 2) to respond to disturbance. We did not pool
samples across years because some variables exhibited
significant interannual variation a\i—’)wvcr 1989) und be-
cause we added two sites in 1998, For each of the
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Abiotic variables: inherent site characteristics
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dynamic prope

other ¢

weather
19 } :
ipitation
deled long-
tio of pre-
upmmun re x\yd at the nearest weather station during
1997 or 1998 to the 30-yr average received at that
station (Hungerford et al. 1989). Values for mean an-
nual number of fx'ost-frcc days, available water capac-
ity, and erosion factors K dex of suscep-
tibility 1o erosion hy rainfall, and rhe maximum rate of
erosion tolerated to permit sustained crop productivity,
respectively) were obtained from published and un-
published soil surveys of the Natural Resources Con-
servation Service (e.g., Baumer 1983, Zielinski 1994).

and T (an in

xposure, non-horse distur-
«posed  bedrock. ibl,owmg

Non-horse disturbance was a cai-

i
amount <>f £
Wentworth ( i‘l 76y,

turbed (o se-

livestock use at the site {e.g., whhlsh of mad vehicle
fecations). Other variables included
| January) of vegetation sampling,
¢ gradient measured

Julian date (dd
elevation in meters, and mean slo
al numerous locations within each site with a handheld
clinometer. Horse-occupied and horse-removed sites
did not significantly differ {iwo-way ANOVAs, P >
0.05; 0.05 < < 0.50) in any of their abiotic
properties previously mentioned or in th
bedrock when each variable was analyzed individually
using published NRCS, modeled, or field-collected dara
{Beever 1899). Horse-removed and horse-occupied
sites also did not differ systematically in their soil color,

power

h to
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Study ranges with horses
Study ranges without horses
B Low elev., horse-occupied
B Low elev., horse-removed
A High elev., horse-occupied
A High elev., horse-removed
;"\;’Ccuﬁty boundaries

Other Nevada mountain ranges

G 1. Locatic
1997 and 1998,

permeability, structure, consistence, plasticity, or de-
grce of calcic soils. Here we tested whether sites dif-
fered when all quantitative variables available for all

sites were included.

Individual plant species data

Because most synecological research on feral horses
has involved plants and because horse-monitoring

s of 19 horse-occupied or horse-removed sites in the western Great Basin, Nevada (USA, sampled during

strategies currently focus exclusively on vegetation, we
investigated relationships among sites using three mea-
surements of the plant community, The first measure-
ment included site-by-site abundance data for each
plant species observed in 1997 or 1998, and the second
used percent cover data. Because cover has been sug-
gested to be more important than abundance in com-
munity dynamics (Daubenmire 1959), the final clas-
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Great Basin (listed in Appendix A
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Disturbance variables
The final set of variables used to characterize horse-
oecupied and horse-removed sites was the set of 10 (of
all variables measured) response variables shown pre-
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viously to be punmm ly altered
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Values for cheatgrass (Bromus feciori

cover

and pe
resent averages irom four 30-m line transects (Table

We calculated plant species richness for sites by
pooling subsamples and adding any other species ob-
served inside or within 10 m of the trapping grid. Re-
} ILﬂCC[Ld

rep-

ss of small mammals

alized community richn
p(‘{x ntic

evation E
were actually captured during
relative measurement {(sensu
pool of mammal species that we could potentially cap-
ture varied greatly across our sites.

rapping. We used this

Tam 2000) because the

Reciprocal averaging (RA) and TWINSPAN analyses
All data matrices were analyzed in PC-ORD 2.0
(McCune and Mefford 1995) using RA (reciprocal av-
eraging; Hill 1973y and TW PAN (Hill 1979, Gauch
and Whittaker 1981) techniques. In RA, site and spe-
cies ordinations are done simultaneously, with the spe-
cies scores representing averages of the site scores, and
reciprocally, the site ordination scores representing av-

crages of the species o

and Reynoids 1988) We used

ounting for the effects of clevati
i

TWINSPAN msv%u\ traditions }I&i‘n’C been o
to classify sites and plant species simuitancousiy, basm
upon compositional similarity or distinctness. How-

ever, TWINSPAN may be used to divide a reciprocal

ordination space for several types of ecological data
minimum

(McCune and Melford 19953). We used a

ree for division of sites,

mum of ﬁw: indicators per div
ibie. Indicator species 1

the f(inal

4
at the end of the reciprocal-av 1d are used
to further polarize the ordination (McCune and Meilord
19935}, Because each abiolic and disturbance variable
exhibited a unique mean and standard deviation, we
used frequency histograms of values for each ve
with 1530 equivalent div

five discrefe categories in TWINSPAN analysc
allowed us to calibrate diverse variables to thc same

analysis. We used cut levels

1$1013 {0 assign gmu‘ps i

scale and enter the same
5, 10, and 20 for plant abundance analyses, cut
levels of 0, 0.02, 0.05, 0.10, and 0.20 for percent cover
analyses, and cut levels of 0, 1, 2, 3, and 4 for abiotic

and disturbance variables. One of the most useful out-

of G, 2,
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Because we encountered many uncommon species in
1998, we analyzed these cover <ldm with d()\x nweight-

we the contri

S N ey
OUUCEU 1o

i those data

relationships among si
i] “Rey species”
c).

RA analyses

Regardless of which combination of axes was used
or whether downweighting of rare species occurred,

sites were associated largely by mountain range in anal-

Ve as

yses of plant abundance dala due (o range-to-range
differences in species composition (Beever 1999).

Across years and axis combinations, all low-elevation

appeared 1o
of floristic simi-

Siles across mountain rang » be very s

itar (Fig. 2a), indicating a high level

dXCH.

P of the norse-r

most of the remaining variab

dlld m] axis u)mbmatums using Key pla

tant spec
s "

tween them \Tm 2 13, sites vfn‘m. ma SAmMe moun
range and elevational stratum usually msewed veg-
ctation more similar in composition to cach other than
to sites from other ranges (Fig. 2c).

Reciprocal averaging 01‘ 12 {abiotic)
mopuu es suggested that relationships among sites
wgly affected by elevation, slightly affected
not noticeably affected
3a). In contrast to char-

inherent site

by mountain range, and w
by presence of horses (Fig.
;wtenzauons using plant species, a‘biolic variables
s less consistently by mountain range, par-

998 (Fig. 3a). Abiotic »mmbics showed
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along axis 1 in both years. Alt
of high-clevation horse-removed and horsc-occupied

hough some separation

sites occurred along axis 2 in 1997 because of different

3a), horse-occupied sites

2 1Ny R ox e CIEang
le from horse-i Ve Siles

wal stratum in five of six graphs

tis-

across years i 0t
tinguishable in 1997 when Julian date was removed
from the analysis.

When we analyzed sites using our 10 diverse dis-

turbance-sensitive  variables, sites segregated most
8l

trongly by presence of horses rather than by elevation

s

€n

ge (Fig. 3b). Only one of sev

&

stratuim or mountain rar
pairs of sites from the same range and stratum consis-
tently segregated from other sites. suggesting little ef-
fect of biogeography. However, horse-occupied sites
were clearly distinguished from horse-removed sites in
both vears, with the exception of one site in each year

(51, 82).

Similar to RA analvses ol plant abundance, the first
twa divisions of TWINSPAN analyses of plant abun-
dance classified sites largely by mountain range. Anal-
ysis of 1997 data grouped five of six same-range. same-

ation and presence of horses in 199
sing cover data for individual plant species, rela-

tionships among sites were also driven by differences
in species composition at the i

rather than by the presence or absence o
¢

the fourth group contained three horse-occupied sites

and five horse-removed sites. All three mountain ranges

having two high-elevation sites segregated companion
sites into the same groups. Data from 1998 produced
a pattern reflecting a strong biogeographic effect. with
only two sites from different strata not segregating with
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either of the other two groups came {rom one reatiment
aroup.

Analy ibiotic) properties also
exhibited strong effects nl b;mn ography, as all but
sites. the same in both years, fell into groups with other
sites from the same range (Table 3). In contrast, TWIN-
SPAN groups classified only eight of our 17 sites in
1997 and 12 of 19 sites in 1998 according to experi-

five

13

mental design criteria (Table 3). Across both years, all
eight groups produced by the first two divisions con-

tained both horse-occupied and horse-removed sites,
and six of these groups exhibited equal mixes of sites
from the two treatment types.

In contrast to the above data sets, analyses of dis-

S1ECH Were se
Horse-removed
from

Fations

and all but two lov cation

horse-removed and ()z;t;ug)icd 2roups.

sels both years.
Iy )

sites were distinguished from

high clevations by spars
daminance of

e by
greate:

gvalions h\

When mﬂ\m cwllu’n c‘\

rences were sites l,ha! Were t‘,ach the tone sile in
the stratum and mountain range in which it was located
(Table 1: PI1, HI, P2, H2, or D3). Elghl of those 1
occurrences, in turn, were instances in which Pah Rah
Range sites were split inm different groups. Of the

7

remaining 14 (e, 31 17y occurrences, eight
were instances in which sites in the Clan Alpine Moun

tains were ordered in different groups. Thus, sites in a
mountain range that were most distant geographically
fram other sites in the same range tended to dissociate
themselves more frequently than did geographically
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TWINSPAN plant cover and abundance anal
portant for interpreting grazing disturbance both within
and he

ment. First, however, why did high-elevation sites ex-
hibit greater difference among ranges as compared to
low-clevation sites? Because differentiation of horse-
removed from horsc-occupied sites at high elevation
using abi les did not occur in 1998,

cause differences observed in 1997 were due meretly
to carlier sampling of horse-occupied sites, differences
in plant
vicariance and isolation as well as effects of
er environmental gradients across all high-elev
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5t suished horse-occu-
pied and hm'sc-ﬂ‘cmmu:d sites bcﬁltc;‘ than did dat
of exclusively plant variables, indirect effects of graz-
mg disturbance (e.g., on small mammals or ants) may
combine with direct effects (e.g., vegetation removal)
to shape the dynamics of mountain ecosystems in the
Great Basin (Hobbs 1996, Keesing 1998). Because RA
and TWINSPAN analyses give the strongest represen-
tations on the first axis (McCune and Mefford 1995),
the ability of disturbance variables to distinguish horse-
c-removed sites, even in the pres-
elevation (Beever 1999),

sites.
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