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Abstract. Population viability analysisis an important tool for conservation biologists,
and matrix models that incorporate stochasticity are commonly used for this purpose.
However, stochastic simulations may require assumptions about the distribution of matrix
parameters, and model ers often select a statistical distribution that seems reasonabl e without
sufficient data to test its fit. We used data from long-term (5-10 year) studies with 27
populations of five perennial plant species to compare seven methods of incorporating
environmental stochasticity. We estimated stochastic population growth rate (a measure of
viability) using a matrix-sel ection method, in which whole observed matrices were sel ected
at random at each time step of the model. In addition, we drew matrix elements (transition
probabilities) at random using various statistical distributions: beta, truncated-gamma, trun-
cated-normal, triangular, uniform, or discontinuous/observed. Recruitment rates were held
constant at their observed mean values. Two methods of constraining stage-specific survival
to =100% were also compared. Different methods of incorporating stochasticity and con-
straining matrix column sums interacted in their effects and resulted in different estimates
of stochastic growth rate (differing by up to 16%). Modelers should be aware that when
constraining stage-specific survival to 100%, different methods may introduce different
levels of bias in transition element means, and when this happens, different distributions
for generating random transition elements may result in different viability estimates. There
was no species effect on the results and the growth rates derived from all methods were
highly correlated with one another. We conclude that the absolute value of population
viability estimates is sensitive to model assumptions, but the relative ranking of populations
(and management treatments) is robust. Furthermore, these results are applicable to arange

of perennial plants and possibly other life histories.
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INTRODUCTION

Population models are important tools for conser-
vationists and represent applications of population bi-
ology theory. As key components of population via-
bility analyses (PVA), they are widely applied to rare
and endangered species. Conservationists and man-
agers use population model s to assess population health
and trends, set priorities, and eval uate management op-
tions (Burgman et al. 1993). Different approaches to
PVA, however, can lead to different conclusions, even
with the same original data (Lindenmeyer et al. 1995,
Millset al. 1996, Pascual et al. 1997, Brook et al. 1999),
and these differences can contribute to controversy and
unstable priorities for management of imperiled species
and the public lands on which they exist (Noon and
McKelvey 1996). One common approach to PVA isto
assembl e field observations of survival and recruitment
into a stage- or age-based transition matrix. Schemske
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et al. (1994) suggested that matrix models could be
widely effective in setting recovery objectives and
evaluating management proposals for endangered
plants. Partly because of its flexibility, the technique
has been widely applied to rare and common species
with diverse life histories. Even among matrix models,
however, differences in implementation may produce
divergent results.

Transition matrices can generate estimates of deter-
ministic parameters such as population growth rate,
sensitivities and elasticities, equilibrium population
structure, and reproductive values. Often of greater in-
terest to the conservationist are probabilistic measures
of population health, such as extinction risk, time to
extinction, and stochastic growth rate. These measures
of population viability can be estimated when demo-
graphic and/or environmental stochasticity are incor-
porated into the model (Menges 2000, Caswell 2001).
Inclusion of environmental stochasticity into matrix
models has generally been accomplished through one
of two mechanisms: matrix or element selection. For
both methods of modeling environmental stochasticity,
repeated estimates of annual recruitment, growth, and
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survival must be available or temporal variability must
be somehow assumed.

Matrix selection involves selecting whole observed
matrices at random at each time step of a simulation,
while element selection requires drawing each com-
ponent of the matrix at random from some statistical
distribution. The two methods, however, do not always
give the same results (Greenlee and Kaye 1997, Kaye
et al. 2001). In addition, for implementation of the
element-selection method, too few data are usually
available for aformal assessment of goodness of fit. A
statistical distribution is often assumed and the distri-
bution is fit to the data at hand. In some cases, even if
a reliable test of fit is possible, the statistically best
distribution may be rejected on the basis of biological
or theoretical reasons, or because of modeling conve-
nience. Unfortunately, different statistical distributions
of such input variables may change assessments of pop-
ulation viability (Nakoaka 1997), and information on
actual temporal variation in demographic parametersis
sparse (Menges 1992). The overall implications of
which stochastic method is chosen remain unclear, al-
though a recent comparison with simulated data sug-
gests little impact of stochastic method (Fieberg and
Ellner 2001).

Another issue that must be addressed when stochas-
tic stage-based models are implemented with the ele-
ment-sel ection method isthat overall survival per stage
should be limited to =100%. When individual transi-
tions (elements) are selected at random, the cumulative
survival (the sum of all transitions in a matrix column)
for a given stage can (but should not) exceed 100%. It
is important to constrain survival so that it is never
>100% or the model will create individuals from noth-
ing (Caswell 2001:431) and produce an overly opti-
mistic estimate of population viability. One exception
to thisruleis for populations in which new individuals
may be produced through clonal increase, such as in
some plants that are capable of vegetative reproduction
(e.g., Bierzychudek 1982). Some authors of PVAS us-
ing stochastic matrix models have either ignored this
issue or not mentioned it in their papers, and those that
acknowledge the problem have used a variety of tech-
niques to resolve it (e.g., Menges 1992, Gross et al.
1998, Kaye et al. 2001). To date, no simulated or em-
pirical comparisons of survival constraint methods
have been conducted. This problem does not exist for
age-based models, since only one transition (survival
to the next age) is selected at random for each age
class, nor for matrix selection methods, because sur-
vival never exceeds 100% in an observed matrix.

No comparisons of different methods of limiting sur-
vival to 100% are available, only afew papers compare
techniques of incorporating stochasticity, and those
that do explore the results from a single species or
simulated data (Greenlee and Kaye 1997, Nakoaka
1997, Fieberg and Ellner 2001, Kaye et al. 2001). In
this paper, we compare seven methods of stochastic
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matrix simulation (matrix selection and six statistical
distributions of element selection) and two methods of
constraining survival to =100%. We evaluate the re-
sults with a measure of population viability (stochastic
growth rate) derived from field-collected data on mul-
tiple species and several populations, with stochasticity
observed over several years for each. In our models,
transition rates were allowed to vary while recruitment
was held constant. Our primary objectives are to: (1)
test for an effect of stochastic method on population
viability estimate, (2) test for an effect of survival con-
straint method, (3) investigate why different methods
yield divergent results, and (4) measure the correlation
between estimates.

METHODS
Sudy species and data sets

Data from five plant species were included in this
analysis: Astragalus tyghensis Peck (Fabaceae), Cim-
icifuga elata Nutt. (Ranunculaceae), Haplopappus ra-
diatus Nutt. (Cronqg.) (Asteraceae), Lomatium brad-
shawii Rose (Math. & Const.) (Apiaceae), and L. cookii
Kagan (Apiaceae). All of these taxa are herbaceous
perennials and rare or endangered in the western United
States (Oregon Natural Heritage Program 2001). Data
were collected from multiple populations of each spe-
cies over a period of five to ten years (Table 1); the
number of observed transition matrices for each pop-
ulation was one less than the number of years of ob-
servation, except for L. bradshawii because one year
of sampling was skipped resulting in only seven ma-
trices from nine years of observation. In total, multi-
year data from 27 populations were used. We included
species from a variety of habitats and ecoregions in
Oregon. In all cases, individual plants were followed
through time as mapped and/or tagged individuals, and
recruitment of seedlings (first-year plants) was moni-
tored annually. Stage-specific fecundity was estimated
based on per-capita seed production in year t and seed-
ling recruitment in year t + 1 (asin Kaye et al. 2001;
‘“anonymous reproduction” of Caswell [2001:173—
174]), or, if only one reproductive stage was recog-
nized, based on seedlings observed in year t + 1 per
reproductive plant in year t. No seed-bank stage was
included in our models because biological evidence
from studies of these species suggests that their seeds
may not persist in the soil or have delayed germination.
For example, no viable seeds more than one year old
have been detected in field studies of Lomatium species
(Thompson 1985), including L. bradshawii (Kaye et
al. 2001), or H. radiatus (T. Kaye, unpublished data).
Seeds of C. elata stored under dry, room-temperature
conditions do not remain viable for greater than one
year, and field-sown seeds of A. tyghensis emerge in
the following spring only (T. Kaye, unpublished data).
Information on each species, including field sampling
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TaBLE 1.
and stage categories, habitat, and ecoregion.
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Study species included in this analysis, number of populations and years observed, number of observed matrices

No. No. years of No. ob-
popula- observation served
Species tions (span) matrices No. stages Habitat Ecoregiont
Astragalus 5 10 (1991-2000) 9 5 (seedling plus small, medi- arid range- Columbia Basin
tyghensis um, large, and very large land
size classes)
Cimicifuga elata 3 5 (1992-1996), or 4-5 5 (seedling, small and large mesic forest Western Cascade
6 (1992-1997) vegetative, reproductive, Range
dormant)
Haplopappus 10 10 (1991-2000) 9 4 (seedling, small and large arid range-  Blue Mountains/
radiatus vegetative, reproductive) land Owyhee Up-
land
Lomatium 7 9 (1988-1994, 7 5 (seedling, small and large  wetland Willamette Valley
bradshawii 1996-1997) vegetative, small and large prairie
reproductive)
L. cookii 2 6 (1994-1999) 5 6 (seedling; small and large  serpentine Klamath Moun-
vegetative; small, medium wetland tains

and large reproductive)

Note: All species are herbaceous perennial plants.

T Based on map in Oregon Natural Heritage Program (2001).

techniques, individual matrix construction methods,
and the annual matrices, is available in the Appendix.

Sochastic population growth rate

We focused on stochastic population growth rate (Ay)
as a measure of population viability for this analysis.
Stochastic growth rate was chosen over the more con-
ventional extinction probability because it is not tied
to a particular time horizon. Most estimates of extinc-
tion probability are based on simulations for a partic-
ular period of time, such as 100 years, and this time
period may be selected to resolve differences between
populations or treatments (i.e., if all populations go
extinct after 100-year projections, the time window
may be shortened until at least some populations have
a chance of persisting). However, this variability in
time span makes it difficult to compare results across
studies (Menges 2000), and we found it difficult to
identify a single time horizon appropriate to all 27 data
sets included in this study. Any one period of simu-
lation resulted in several populations with extinction
probabilities of either 0 or 1. This resulted in an in-
ability to resolve differences in these populations, and
created many constant values inappropriate for eval-
uation with analysis of variance (ANOVA). Unlike the
deterministic growth rate (\), A, incorporates environ-
mental variability and does not assume a stable (equi-
librium) population structure (Tuljapurkar 1990). Fur-
ther, as stochasticity increases, A declines, and is al-
ways less than the mean growth rate (which estimates
\; Caswell 2001). Populations with A, > 1.0 are pro-
jected to grow, while those with A, < 1.0 are projected
to decline, making A, a convenient measure of popu-
lation viability in stochastic environments. Therefore,
in this paper we use A\, asan index of relative population
viability and do not consider extinction probability fur-
ther.

To calculate \,, we followed the numerical simula-
tion method outlined in Caswell (2001:396). When the
log of population growth is averaged over avery large
number of time steps, it converges to a fixed value
determined by vital rates and environmental processes
(Tuljapurkar 1990, Caswell 2001). For each type of
simulation, we ran the models described below for
10000 time steps (discarding the first 500 to omit tran-
sient effects) to calculate the stochastic growth rate.
All stochastic modeling described in this paper was
implemented in MATLAB 5 (Mathworks 1998).

Modeling environmental stochasticity

Environmental stochasticity was modeled in two
main ways: through matrix selection and element se-
lection. To incorporate stochasticity via matrix selec-
tion, the observed matrices were selected at random
with equal probabilities. That is, they were assumed to
be independently and identically distributed (i.i.d.). At
each time step of a simulation, one matrix was selected
at random and postmultiplied by the vector of individ-
ual abundances (e.g., Bierzychudek 1982, L ennartsson
2000). The initial stage distribution was the average
observed distribution for each population. The use of
adifferent initial distribution could alter the short-term
dynamics of our models, but the long-term impacts,
which are emphasized by our long-run estimates of Ag
after omission of the first 500 time steps, are unlikely
to be much affected. In element selection, a statistical
distribution was first fit to the observed data for each
transition matrix element, then random values were
drawn from the distribution to create a new matrix at
each time step. This matrix was then postmultiplied by
the abundance vector to iterate the model, as above.

We used six different statistical distributionsto com-
pare the effect of input distribution shape on \.. Each
of these distributions has been used in prior stochastic
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TaBLE 2. Examples of stochastic models, their use of statistical distributions for varying transition elements, and methods

of constraining survivals to 100%.

Species or study Citation

Distribution Survival constraint

Beta transitions contingent on
survival

Beta none required

Normal none

Truncated normal none required

Truncated normal resampled

Truncated normal if survival >100%, rescaled
to 100%

Truncated normal and log-
normal
Truncated lognormal

none required
not indicated (none?)

Lognormal (truncated for none required

survivals)
Gamma none required
Uniform not indicated (none?)
Uniform not indicated (none?)
Uniform not indicated (none?)

Observed/discontinuous none required

Hudsonia montana Gross et al. (1998)
Desert tortoise
comparative study
Totoaba macdonal di

Doak et al. (1994)

Guerrant (1996)

Cisneros-Mata et al.
(1997)

Menges (1992)

Kaye et al. (2001)

various, comparative
Lomatium bradshawii

Yoldia notabilis Nakoaka (1997)

giant kelp Burgman and Gerard
(1990)

Northern Spotted Owl Akcakaya and Raphael
(1998)

Chinook salmon
Pediocactus paradinei
Astragalus cremnophylax
Euphorbia clivicola

Ratner et al. (1997)

Frye (1998)

Maschinski et al. (1997)

Pfab and Witkowski
(2000)

Red-cockaded Woodpecker Maguire et al. (1995)

modeling studies (Table 2) or has been recommended
for examination. They included the beta, truncated nor-
mal, truncated gamma, triangular, uniform, and ob-
served/discontinuous (see Fig. 1 for examples of the
shapes of these distributions as fit to observed transi-
tion values). Transition probabilities must be bounded
by 0 and 1. Therefore, the fitted distributions must also
be constrained to prevent transition probabilities <0 or
>1 from being selected at random, a modeling error
that, in the absence of clonal spread, is biologically
unreasonable. Therefore, the beta distribution is agood
candidate, sinceit is bounded by 0 and 1 by definition.
The beta is also very flexible, capable of fitting to an
extremely wide variety of distribution shapes (Evans
et al. 2000). The normal distribution, on the other hand,
must be truncated to 0 and 1, and in our implementation
this was accomplished by omitting values outside <0
and >1 and resampling until an appropriate value was
obtained. The gamma distribution is bounded by 0 on
the left tail, but was truncated to 1 on the right by
omitting values >1 and resampling. The triangular dis-
tribution may be appropriate when only minimum and
maximum values are known (Caswell 2001), although
amost likely value must be specified. We fit this model
to our observed data by finding the minimum and max-
imum values, and using the mean as the most likely
value (although the median or another most likely value
might be appropriate in some cases). For the uniform
distribution (also known as the rectangular distribu-
tion), we determined only the minimum and maximum
values from our data sets. Finally, the observed/dis-
continuous distribution was defined here as the set of
observed values for each transition, and these were
drawn at random with equal probability (i.i.d.). Se-
lecting from observed values may also be referred to
as a bootstrap technique.

The method of matching moments was used to fit
the beta and gamma distributions to our data because
the observed values contained zeros and ones in some
cases. An alternative would have been to use maxi-
mum-likelihood estimation techniques, but this would
have forced us to drop observed values equal to O or
1. However, dropping values would necessitate drop-
ping whole matrices if we were to compare element
selection with matrix selection methods, and we wanted
to emphasize the empirical basis of our data sets while
maximizing the available sample sizes. Frey and Bur-
master (1999) have shown that, for the beta distribution
at least, although the method of matching moments
produces less efficient statistical parameter estimates
than maximum-likelihood methods, matching moment
estimates are less sensitive to extreme values. There-
fore, we used matching moment estimators because
they appear to be adequately robust and because they
tolerated the occasional zeros and ones among our ob-
served values. For all our simulations, stochasticity was
applied only to the transition elements; recruitment pa-
rameters were held constant at their observed mean
values.

Constraining survival

We examined two methods of constraining overall
survival to =100%. In the first method, if the sum of
transition probabilities for a given stage exceeded
100%, the entire set for that stage was resampled until
it did not exceed 100% (a method employed by Menges
1992). We refer to this trial-and-error method as re-
sampling. Our second method, which we call rescaling,
was to temporarily include mortality in our observed
fates, draw a set of transition probabilities (including
mortality) for each stage, rescale all probabilities to
sum to 100%, then omit the mortality valuesin the final
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Triangular Uniform data
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Probability densities of some statistical distributionsfit to examples of observed values of transition rates recorded

over several years of observation. Each column illustrates a different distribution (beta, truncated gamma, truncated normal,
triangular, and uniform), and each row represents the fit of these distributionsto the datalisted at the right, which are selections
from among the data sets used in this paper. These data represent the observed values for a particular transition, as indicated
in the notes at the far right. Note that the truncated normal distribution is truncated at both tails, and the truncated gamma
is truncated only on the right; note also that the degree of truncation differs substantially among observed data sets.

matrix. In this process, rescaling was applied at every
time step to every stage, forcing the sum of all fates
(including mortality) to equal 100% (which they always
do in the real world). We believe this method has not
been employed previously.

Analysis

Testing for effects of input distributions, survival
constraint, and study species—We tested for effects
of input distribution, survival constraint method, spe-
cies, and interactions among these factors using SAS
PROC MIXED (SAS Institute 1990). Use of raw es-
timates of A, as a response variable posed a difficulty
because survival constraint methods were applied only
to the element selection procedures, not the matrix se-
lection procedure, making our design unbalanced.
Therefore, we chose a response variable that compared
the relative response of each element-selection pro-

cedure to matrix-selection estimates of \.. Specifically,
for each population, we calculated the proportional dif-
ference in \ between the matrix-selection procedure
and the procedures using various element-sel ection dis-
tributions and survival-constraint methods (i.e., [\, €l-
ement — N\ matrix]/\, matrix). This step was appro-
priate given that we are interested in the relative effects
of these methods more than their actual estimates of
mean stochastic growth rate. We considered this re-
sponse variable to be structured in a split-plot design,
with species as the whole plot and individual popula-
tions as replicates. Species was included as a fixed
effect to test for differences among taxa in their PVA
sensitivity to model assumptions, and for interactions
with the other factors.

Detecting bias in mean and variability.—To explore
the fit of each simulation technique to the observed
data, we compared the mean and variability of each
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TaBLE 3. Split-plot ANOVA for the effects of species, statistical distribution of input vari-
ables, and survival constraint method on the proportional change in A\ relative to the matrix
selection procedure (NDF and DDF are numerator and denominator degrees of freedom).

Type
Source NDF DDF I F P

Whole plot effects

Species 4 22 0.4 0.8044
Subplot effects

Survival constraint method 1 242 686.17  0.0001

Stochastic method 5 242 53.79  0.0001
Interactions

Stochastic method X constraint method 5 242 2491  0.0001

Species X constraint method 4 242 0.94 0.4434

Species X stochastic method 20 242 112  0.3326

Species X stochastic method X constraint method 20 242 0.46  0.9788

transition element from the observed data sets with
results from each of the element-sel ection and survival-
constraint techniques. First, we used each of the ele-
ment-sel ection methods to generate 1000 random ma-
trices from each population using each of the survival-
constraint methods. Second, we calculated the mean
and standard deviation (sp) for each transition element
(excluding recruitment) from these simulated data sets.
Third, we calculated the relative difference in mean
and sb between those estimated from the observed val-
ues and those calculated from the simulated matrices.
We defined bias broadly to include the combined dif-
ferences between observed and simulated means and
sbs due to survival constraint method and distribution
shape. We then tested for correlations between mean
estimates of relative bias and mean relative differences
in A, using multiple regression, to determine how much
of the simulation technique effects were due to these
biases.

This process was repeated using estimates of mean
relative bias weighted by the elasticity of each element,
so that bias in elements of relatively low importance
to growth rate were down-weighted and those with high
influence were weighted more strongly. Although sto-
chastic elasticities may be estimated as measures of the
importance of individual transitions on \¢ (Tuljapurkar
1990, Caswell 2001:402—-408), we used elasticities cal-
culated from mean observed matrices because they are
easier to calculate and they are excellent predictors of
stochastic elasticities, even though the deterministic
and stochastic growth rates may be quite different (Ca-
swell 2001, Caswell and Kaye 2001).

Correlation among techniques.—Even if the various
techniques for incorporating stochasticity result in dif-
ferent estimates of A\, we would like to know if they
yield similar relative results. That is, if one population
has a higher \ than another as measured by one sto-
chastic method, is it also higher as measured by a dif-
ferent method? To measure their degree of association,
we tested for correlations between estimates of A, from
each method of including temporal variability using

the Pearson product-moment (r), and this procedure
was repeated for each method of constraining survival.
The total sample size for these correlations was 27,
which was the total number of populations sampled
across all five species.

RESULTS

Effects of input distributions, survival constraint,
and study species

Model procedures had substantial effects on esti-
mates of stochastic population growth rates. The choice
of input distributions and survival-constraint methods
both had significant effects on mean proportional dif-
ferences in A\, relative to the matrix selection method
(Table 3), but there was a significant two-way inter-
action between these factors (P = 0.0001). That is, the
resampling method of constraining stage-specific sur-
vival to =100% yielded mean estimates of A, consis-
tently lower than the rescaling procedure, but the mag-
nitude of this reduction differed among stochastic el-
ement selection methods (Fig. 2). Study species did not
affect theseresults (P = 0.804), and there were no two-
or three-way interactions with taxon (P = 0.333). Es-
timates of A, ranged from 0.658 to 1.173, making the
results applicable to a wide range of population be-
havior.

When the resampling survival-constraint method
was applied, most element-selection distributions
yielded estimates of A\, equal to or lower than estimates
derived by matrix selection. The betadistributionyield-
ed the lowest relative estimate of A\, (14% lower than
the matrix shuffle method), while the truncated gamma
and observed/discontinuous distributions were only
slightly (but significantly) closer to the matrix shuffle
estimates (Fig. 2). Both the truncated normal and uni-
form distributions produced mean \, estimates indis-
tinguishable from matrix selection. The mean estimate
from the triangular distribution was intermediate be-
tween these two groups of procedures. In contrast, un-
der the resampling procedure, most A\, estimates were
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level (Fisher's protected LSD). Asterisks (*) indicate a sig-
nificant difference at P < 0.05 between the stochastic growth
rate calculated viamatrix selection and each element sel ection
method.

higher than those from matrix selection. Estimatesfrom
the uniform distribution were highest (~4% higher than
estimates from matrix selection) and those from the
beta, truncated gamma, and observed/discontinuous
were lowest (Fig. 2). Those from the truncated normal
and triangular distributions were intermediate. Esti-
mates from the observed/discontinuous distribution did
not differ significantly from the matrix selection meth-
od (Fig. 2).

Evaluation of bias in mean and variability

Unweighted mean and sb.—Bias was detected in the
unweighted mean and sp of several element selection
methods and both survival constraint techniques. Com-
pared to the observed values, mean transition element
values were reduced by 12-15% by the beta, truncated
gamma, and observed discontinuous distributionswhen
the resample constraint method was used. When the
rescale technique was employed, however, these dis-
tributions had no detectable bias on transition means
(Fig. 3, top left). In contrast, the truncated normal,
triangular, and uniform distributions consistently in-
creased the mean over the observed values by 6-31%,
regardless of survival-constraint method. Standard de-
viations were also altered by the different methods. In
all cases, sbs were depressed relative to the observed
values. Values derived from the beta, truncated gamma,
and observed/discontinuous showed the least bias (6—
21% lower than observed), while those from the tri-
angular had the greatest reduction (64—83%), depend-
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ing on the method of constraining survival (Fig. 3,
middle left). There were no consistent differences in
bias to the standard deviation caused by the two sur-
vival constraint procedures. Multiple linear regression
indicated that bias in the mean had a significant effect
on proportional difference in A (P = 0.0017), while
reductionsin sp did not (P = 0.6603). Bias in the mean
explained 60.7% of the variability in \, estimates (Fig.
3, bottom left).

Weighted mean and so.—When bias in mean tran-
sition elements was weighted by elasticity, a somewhat
different picture emerged. The resampling procedure
generally resulted in varying degrees of negative bias,
depending on the statistical distribution used to incor-
porate stochasticity. For example, the beta, truncated
gamma, and observed/discontinuous distributions re-
sulted in reductions in the weighted means of 12—16%
(similar to the unweighted case), but the truncated nor-
mal and triangular biased the weighted mean downward
by 3% and 6%, respectively (Fig. 3, top right). The
uniform distribution had no effect on the weighted
means. The rescaling procedure resulted in no detect-
able bias on the weighted mean transition rates for all
stochastic methods except the uniform, which in-
creased the mean by about 2% (Fig. 3, top right). Over-
al, weighted sp biases differed little from the non-
weighted cases (Fig. 3, middle right).

As in the unweighted case, multiple regression in-
dicated a significant linear correlation between differ-
encesin \,and biasin the weighted mean (P < 0.0001),
but not so (P = 0.1038). Bias in the weighted mean
explained 98.3% of the variability in proportional dif-
ferences in lambda between element selection tech-
niques and matrix selection (Fig. 3, bottom right). The
slope of this relationship was indistinguishable from 1
(95% ci, 0.93-1.1), and the intercept was close to, but
slightly higher than, 0 (95% ci, 0.018-0.031). Thus,
variation in A, estimates derived through element se-
lection relative to matrix selection were due almost
entirely to biases in the weighted mean transition rates.

Correlation among techniques

Most methods of incorporating stochasticity into ma-
trix models produced estimates of A, that were highly
correlated with each other. For both methods of sur-
vival constraint, resampling and rescaling, the lowest
correlation was between estimates via the beta and ob-
served/discontinuous distributions (r = 0.862 and
0.849, respectively) and the highest was between the
truncated gamma and uniform (r = 0.991 and 0.992,
respectively; Table 4). Regardless of which survival-
constraint technique was used, at least 16 of the 21
possible correlations had r = 0.9.

DiscussioN

Effects of stochastic methods and
survival constraints

Different methods of incorporating stochasticity into
matrix models resulted in substantial variation in es-
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timates of population viability. The speciesfrom which
the observed data were collected, however, had no ef-
fect, and estimates of A\, spanned a wide range, sug-
gesting that these results may be broadly applicable,
at least among herbaceous perennial plants from the
ecoregions represented here (Table 1). In element se-
lection, the distribution shape for sampling transition

probabilities had significant effects on estimates of \,,
but the magnitude and direction of this effect depended
on which method was used to constrain stage-specific
survival to =100% (Fig. 2). For example, when resam-
pling was used to constrain survivals, the beta, ob-
served/discontinuous, truncated gamma, and triangular
distributions resulted in A, estimates significantly lower

TaBLE4. Pearson correlation coefficients (r) for each of seven methods of incorporating environmental variability to calculate

stochastic population growth rate (\J).

Matrix Observed/ Truncated  Truncated

Stochastic method selection  discontinuous  Uniform normal gamma Triangular Beta
Matrix selection 0.869 0.928 0.877 0.926 0.915 0.905
Observed/discontinuous 0.916 0.877 0.970 0.913 0.977 0.862
Uniform 0.976 0.893 0.920 0.991 0.930 0.986
Truncated normal 0.955 0.975 0.945 0.943 0.959 0.895
Truncated gamma 0.962 0.900 0.992 0.954 0.949 0.988
Triangular 0.951 0.989 0.942 0.991 0.948 0.908
Beta 0.947 0.849 0.984 0.906 0.973 0.903

Note: Correlations with A\ calculated using the resample survival constraint method are above the diagonal, while those
derived via the rescale method are below (P = 0.0001 in each case).
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than those derived from matrix selection. But when
survivals were constrained through rescaling, all dis-
tributions, except the observed/discontinuous, pro-
duced similar results and exceeded matrix selection
estimates of A\ Overall, combining the resampling
method with the beta distribution resulted in the lowest
mean estimates of A, (13.8% below the mean matrix
selection estimates), while rescaling with the uniform
distribution produced the highest (4.3% greater than
matrix selection estimates). Despite variation in esti-
mates of \, the different stochastic methods produced
highly correlated results (r = 0.849-0.992, Table 4),
suggesting that although their quantitative estimates of
population viability may have differed, their relative
ranking of populations did not.

Concerns that choice of a stochastic method might
influence the results of risk-assessment models are not
new (Bukowski et al. 1995, Nakoaka 1996, Hamed and
Bedient 1997, Menges 2000, Caswell 2001). Past com-
parisons of matrix and element selection procedures
have found both large and small differences in esti-
mates of population viability. For example, a compar-
ison from H. radiatusfound that element selection from
atruncated normal distribution resulted in much lower
estimates of extinction risk than matrix selection
(Greenlee and Kaye 1997). Kaye et al. (2001) found
estimates of A\, derived for L. bradshawii from element
selection (truncated normal distribution) to be indis-
tinguishable from, or moderately higher than, estimates
from matrix selection. Extinction probability estimates
were either identical or slightly lower than from matrix
selection. These patterns are consistent with those re-
ported here, which should be expected because both
examples used earlier portions of the same data sets
used in this analysis. Even so, Greenlee and Kaye
(1997) incorporated only four years of data and Kaye
et al. (2001) used six, and both studies used a different
approach to survival constraint than those conducted
here. Although stochastic growth rate has been rec-
ommended as a measure of population viability suitable
for comparisons across studies (Menges 2000), differ-
ences among stochastic methods make many compar-
isons dangerous. This problem can be avoided, how-
ever, if the same methods are used among studies
(which seldom may be the case; see Table 2), or if the
estimates of stochastic growth rate are first adjusted by
the cumulative bias of the specific survival constraint
methods and probability distributions. In general, com-
parisons across viability studies should strive to stan-
dardize as many model assumptions as possible, aprac-
tice that may find much agreement among techniques
(Brook et al. 2000a, b).

Among element-selection methods, skewness has
been identified as an important aspect of a distribution
with potential effectson estimates of population growth
rate (Slade and Levinson 1984), and the selection of a
statistical distribution can, in theory, substantially af-
fect the results of arisk assessment (Bukowski 1995).
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The effects of different distributions have been much
more thoroughly reviewed for randomly varying re-
cruitment (Tallie et al. 1995) than for transition prob-
abilities. Nakoaka (1997), for example, estimated \
for two populations of a marine clam by allowing re-
cruitment to vary according to both lognormal and trun-
cated normal distributions (one-tailed truncation was
necessary because recruitment must be bounded by
zero on the left). Relative to the truncated normal, the
lognormal decreased \, at one site but increased it at
the second. In our analyses, recruitment was held in-
variant at the mean observed values and stochasticity
was applied only to the transition probabilities. If we
had allowed recruitment to vary as well, estimates of
\s may have been lower, our results may have differed,
and there may have been an interaction between choice
of recruitment and transition distributions. Since both
types of vital rates are often varied in stochastic matrix
models, this area deserves further research.

Resampling to constrain survival to =100% always
reduced \ relative to rescaling by introducing negative
bias into weighted mean vital rates (Fig. 3, upper right
panel). The rescaling method, on the other hand, did
not introduce measurable bias (except for the uniform
distribution, which was slightly positively biased). Al-
though researchers have used various techniques to
constrain stage-specific survivalsto =100%, or ignored
the problem (Table 2), we found the choice of survival
constraint technique to have a strong effect on our re-
sults. Results from the rescaling technique were fairly
consistent among element selection distributions, with
the only significant differences being between the uni-
form distribution vs. the beta, discontinuous/observed,
and truncated gamma (which were indistinguishable
from each other, Fig. 2). Relative to estimates from
matrix selection, A\ estimates were higher by only 1.7%
(discontinuous/observed) to 4.3% (uniform). Other
methods used by previous authors of stage-based sto-
chastic matrix models include a different form of re-
scaling used when survivals sum to >100% (without
regard to mortality, e.g., Kayeet al. [2001]) and making
transitions contingent on underlying vital processes
(e.g., Gross et al. 1998).

One reason for the similarity in results among the
element selection methods compared here with rescal-
ing (in the relative absence of bias) may be that some
of their important differences are in their tails—their
chance of extreme events—and these tails were either
bounded to fall between zero and one, or weretruncated
to do so. In an examination of the tail behavior of the
lognormal, Weibull, gamma, and inverse Gaussian dis-
tributions in Monte Carlo simulations, Haas (1997)
found that, even at relatively high standard deviations,
the important differences among them were in the ex-
treme (upper) tails. Since the distributions with long
tails included in our implementations (i.e., normal and
gamma) were truncated, these differences were, at |east
in part, reduced. For example, the triangular and trun-
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cated normal distributions have identical peak values,
but substantial portions of both tails of the normal may
be cut off (Fig. 1), thus increasing the similarity of the
two distributions. Haas (1997) further showed that
identifying the correct distribution from small data sets
may be difficult or impossible (our samples numbered
only four to nine, depending on the species), but the
differences will be primarily in the tails. Again, if the
tails are truncated, these differences may be partly mit-
igated.

Although truncation may help explain some of the
similarities among the element-sel ection methods eval-
uated here, it is not necessarily a recommended prac-
tice. Especialy in cases where only one tail is trun-
cated, omitting chance events in this way from a dis-
tribution will change the mean and reduce variance, as
illustrated here by negative bias in sp estimates (Fig.
3). Truncation of transition probabilities drawn from a
normal distribution, especially those near 1, lowered
the mean and increased extinction probability in via-
bility models of the fish, Totoaba macdonaldi (Cis-
neros-Mata et al. 1997). In the case of Nakoaka's
(1997) marine clam, truncation of the lower tail in the
normal distribution was required to generate random
numbers for modeling variation in recruitment. This
one-tailed truncation increased the mean by ~25% and
decreased the variance by 35% at one site (as discussed
in Caswell 2001:412), destroying the fit of the distri-
bution to the data. It may be that in many of our cases
with observed data, substantial portions of the normal
and gamma probability density functions were within
the range 0—1, which would explain why truncating
them produced little or no effect on the weighted mean
and only “‘typical’ reductions (Fig. 3) in standard de-
viation. Of course, the effect of truncation will be stron-
ger as the mean approaches 0 or 1 (depending on the
distribution), because a larger proportion of the prob-
ability density function will be truncated. For example,
if agammadistribution isfitted to a group of observed
transition probabilities close to 1, the upper tail will
extend substantially past 1, and truncation will remove
asignificant portion of the probability density function.
If thisis a concern, a clever procedure (Burgman and
Gerard 1990) that will reduce its effect is to transform
the observed probabilities (p) to g = 1 — p, fit the
distribution, draw a random sample, then back trans-
formthevalueto 1 — q, thusavoiding most truncations.

Selecting a distribution that does not require trun-
cation may be preferred. The endpoints of the uniform
and triangular distribution were defined by the ob-
served data, so they never fell beyond 0-1 in our sam-
ples. However, their shapes are simplistic and they did
not capture variance well, resulting in relatively low
sbs (28-83% below observed values). Even so, they
may be appropriate in cases where few data are avail-
able. For example, the triangular distribution may be
an efficient substitute for the beta in some cases
(McCrimmon and Ryavec 1964). The beta distribution,
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in contrast, is bounded by 0 and 1 and has a flexible
shape within those bounds, traits that make it useful
for modeling transition probabilities. It is perhaps the
first distribution that should be explored when devel-
oping a stochastic matrix model with element sel ection.
The observed/discontinuous distribution did not allow
transition elements to vary outside the observed limits,
and it did not allow selection of values other than those
observed. Depending on the model, this may or may
not beadesirabletrait. When combined with therescale
survival-constraint method, it produced results indis-
tinguishable from those derived with the beta distri-
bution or matrix selection. Other distributionsthat have
received little attention but that stochastic matrix mod-
elers should explore include the S distribution, which
is based on differential equations and is well suited to
probabilities (Voit and Schwake 2000), and the beta
binomial, which is appropriate for distributions based
on probabilities derived from counts (Griffiths 1973,
Tamura and Young 1987, Kahn and Raftery 1996). The
beta binomial may be especially useful and appropriate
for stochastic matrix models because it can separate
demographic variability from estimates of environ-
mental stochasticity (Kendall 1998).

Matrix vs. element selection

Both approaches for incorporating stochasticity, el-
ement selection and matrix selection, have advantages
and disadvantages as modeling techniques. For ex-
ample, because element selection can sample from
parametric distributions of transition probabilities, the
possible trajectories that a population size can follow
are limited only by the distribution shape. In contrast,
matrix selection limits the number of pathways a pop-
ulation can follow in a stochastic simulation because,
at each time step, one of a finite number of matrices
must be selected. Through parametric element selec-
tion, a greater number of possible paths can be ex-
plored, especially those that occur with lower frequen-
cy (the tails in a distribution). These rare events may
be important for assessing chance eventslike extinction
(Burgman et al. 1993). Element selection may also ac-
commodate missing data more efficiently than matrix
selection by fitting a distribution to the vital rates for
which data are available. In matrix selection, individual
missing vital rates must be estimated or replaced with
pooled data from the other individual matrices. How-
ever, matrix selection, unlike element selection in most
stage-structured models, is free of the problem of con-
straining stage-specific survivals to =100%. Finally,
element selection may be a better choice when sto-
chasticity must be applied to individual vital rates
through a functional relationship with an environmen-
tal factor, such as precipitation (e.g., Gross et al. 1998).

One weakness of standard element sel ection methods
is that transition probabilities may not be explicitly
correlated with one another, even though a** good’’ year
for one vital rate, such as survival of reproductive
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plants, is often a good year for another, such as fecun-
dity. Therefore, a matrix could be constructed from
random elements that has a mixture of ““good”’ and
“bad” vital rates—a condition that may not occur in
nature. Matrix selection is not usually faced with this
problem, since al of the elements in an individual ma-
trix usually come from the same year and represent
observed vital rates. Correlation among vital rates is
believed to be widespread (Horvitz and Schemske
1995, Oostermeijer et al. 1996, Horvitz et al. 1997,
Gross et al. 1998, Caswell 2000, 2001, Menges 2000)
and may tend to reduce population viability (Ferson
and Burgman 1995, Cisneros-Mata et al. 1997, Pfab
and Witkowski 2000, Fieberg and Ellner 2001). In the
current study, differencesin estimates of A\, were large-
ly explained (r2 = 98.4%) by degree of bias in mean
transition rates (after weighting with elasticities), and
the slope of the regression line for this linear corre-
lation did not differ from 1.0 (Fig. 3). The intercept of
thislinewas slightly higher (2.4%) than expected, how-
ever, and this may be due, in part, to increases in A\
(relative to matrix selection) through omission of cor-
relation structure during element selection. Unfortu-
nately, tools for multivariate random number genera-
tion are not widely available (Caswell 2001) for dis-
tributions other than the normal, but recent advances
in statistical methods (e.g., Ferson and Burgman 1995,
Haas 1999, Fieberg and Ellner 2001, Kaye 2001; P
Fackler, unpublished manuscript) may make their ap-
plication more accessible for stochastic matrix models.

Conclusion

For many observed data sets, it may be difficult to
test the fit of a particular distribution, partly because
of limited samples (Karian and Dudewicz 2000:90-96).
Sorribas et al. (2000) demonstrated that even with 160
random samples from known distributions, a best-fit
screening algorithm failed to identify the source dis-
tribution in a majority of cases. Despite this uncer-
tainty, most stochastic modelers select a distribution
that seems reasonable, fit it to their available data, and
execute the model. We have shown that distribution
choice for transition probabilities may or may not have
a strong influence on stage-structured matrix model
outcomes, depending on what method of constraining
overall stage-specific survival to 100% is used. Further,
this conclusion is consistent across a variety of peren-
nial plant species. Although distribution shapes can
cause differences in viability estimates, their effects
interacted with the two different survival constraint
methods we employed and were largely explained by
the degree of bias induced by these methods.

Little previous attention has been given to the sur-
vival constraint problem, which applies only to stage-
structured models in which individuals can make more
than one transition, but choice of this procedure can
be at least as important as element selection technique
(Fig. 2), and ecological modelers need to be aware that
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how they treat thisissue could have substantial impacts
on their results and should take steps to control bias
in their simulations. If a method of constraining sur-
vival is employed that results in a negative bias, mod-
elers can expect relatively low estimates of \, and sub-
stantial differencesin model results among various sta-
tistical distributions used for parametric element-se-
lection models. However, when this bias is eliminated,
estimates of A\, from different element-selection meth-
ods tend to converge. To avoid bias in influential tran-
sitions, we recommend the use of either an element
selection procedure combined with the rescaling tech-
nique described here, or matrix selection. Note, how-
ever, that this recommendation applies to organisms
with complex life histories that result in multiple pos-
sible transitions from any given stage. Survival con-
straints are not necessary in age-based models or other
life histories in which individuals have only one pos-
sible survival pathway. Results from this study and
others (Fieberg and Ellner 2001) suggest that in the
absence of the survival constraint problem, or if bias
isnot induced in its correction, different statistical dis-
tributions used in element selection often yield very
similar results in PVA.

Element-selection methods are often necessary, es-
pecially when the number of complete matrices is in-
sufficient for matrix selection, if element means or var-
iances must be estimated from the literature or another
study, and when a specific correlation between ele-
ments and environmental variables is desired. Our re-
scaling procedure for constraining survival to 100%
reduces bias and leads to estimates of A, from element
selection methods that are similar to those from matrix
selection (although slightly higher in some cases, pos-
sibly due to the lack of correlation among elements in
our technique).

The wide range of population-viability estimates
possible from a single data set analyzed by slightly
different methods is cause for concern; one technique
might indicate a robust population while another could
project a rapid decline (Fig. 2). We agree with Beis-
singer and Westphal (1998), Menges (2000), and Fie-
berg and Ellner (2001) that the strength of viability
analysis rests in its use as a comparative tool rather
than a means of assessing the health of individual pop-
ulations. Life-table response experiments (e.g., Ca-
swell 1989, 2001), in which vital rates of a population
form the response variable in an experimental design,
are a powerful tool for comparing populations exposed
to different treatments. Especially in the face of un-
certainty due to measurement error, which can create
very wide confidence intervals on estimates of extinc-
tion probability (Ludwig 1999, Fieberg and Ellner
2000), the use of viability analysesto assesstherelative
vigor of a group of populations or the impact of a
habitat alteration should be emphasized over quanti-
tative estimates of viability. Fortunately, the relative
ranking of plant populations examined here appears to
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be fairly robust to differences in stochastic methods
(i.e., the results of different techniques are highly cor-
related). It may also be sound practice to compare sev-
eral PVA methods when developing management rec-
ommendations for endangered species (e.g., Pascual et
al. 1997, Fisher et al. 2000).

Although stochastic growth rate has been identified
as a measure of population viability suitable for com-
parisons across studies (Menges 2000), differences
among stochastic methods make such comparisons dan-
gerous. This problem can be avoided, however, if the
same methods are used among studies (which is seldom
the case, see Table 2), or if the estimates of stochastic
growth rate are first adjusted by the cumulative bias of
the specific survival constraint methods and probability
distributions.
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APPENDIX

Field sampling techniques, matrix construction notes, and original transition matrices for five perennial plant species are
available in ESA's Electronic Data Archive: Ecological Archives E084-038-A1.



