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Abstract: Generalized linear mixed models (GLMM) were used to study the effect of vegetation cover, elevation,
slope, and precipitation on the probability of ignition in the Blue Mountains, Oregon, and to estimate the probability of
ignition occurrence at different locations in space and in time. Data on starting location of lightning-caused ignitions in
the Blue Mountains between April 1986 and September 1993 constituted the base for the analysis. The study area was
divided into a pixel–time array. For each pixel–time location we associated a value of 1 if at least one ignition oc-
curred and 0 otherwise. Covariate information for each pixel was obtained using a geographic information system. The
GLMMs were fitted in a Bayesian framework. Higher ignition probabilities were associated with the following cover
types: subalpine herbaceous, alpine tundra, lodgepole pine (Pinus contortaDougl. ex Loud.), whitebark pine (Pinus
albicaulis Engelm.), Engelmann spruce (Picea engelmanniiParry ex Engelm.), subalpine fir (Abies lasiocarpa(Hook.)
Nutt.), and grand fir (Abies grandis(Dougl.) Lindl.). Within each vegetation type, higher ignition probabilities occurred
at lower elevations. Additionally, ignition probabilities are lower in the northern and southern extremes of the Blue
Mountains. The GLMM procedure used here is suitable for analysing ignition occurrence in other forested regions
where probabilities of ignition are highly variable because of a spatially complex biophysical environment.

Résumé: Des modèles linéaires généraux mixtes (GLMM) ont été utilisés pour étudier l’effet du couvert végétal, de
l’altitude, de la pente et des précipitations sur la probabilité d’allumage dans les Blue Mountains, en Oregon, et pour
évaluer la probabilité qu’un allumage se produise à différents endroits dans l’espace et le temps. Des données sur la lo-
calisation des allumages causés par la foudre dans les Blue Mountains entre les mois d’avril 1986 et septembre 1993
ont servi de base à l’analyse. L’aire d’étude a été divisée en un réseau de pixel–temps. Une valeur de 1 ou 0 a été at-
tribuée à chaque endroit correspondant à un pixel–temps selon qu’au moins un allumage est survenu ou non. Les infor-
mations associées à chaque pixel ont été obtenues à l’aide d’un système d’information géographique. Les GLMM ont
été ajustés selon une structure bayésienne. De plus fortes probabilités d’allumage étaient associées aux types de cou-
verts suivants : plantes herbacées subalpines, toundra alpine, pin lodgepole (Pinus contortaDougl. ex Loud.), pin à
blanche écorce (Pinus albicaulisEngelm.), épinette d’Engelmann (Picea engelmanniiParry ex Engelm.), sapin subalpin
(Abies lasiocarpa(Hook.) Nutt.) et sapin grandissime (Abies grandis(Dougl.) Lindl.). Pour chaque type de couvert vé-
gétal, les probabilités d’allumage étaient plus élevées à plus faible altitude. De plus, les probabilités d’allumage étaient
plus faibles aux extrémités nord et sud des Blue Mountains. La procédure GLMM utilisée ici convient pour analyser
l’occurrence des allumages dans d’autres régions couvertes de forêt où les probabilités d’allumage sont très variables à
cause d’un environnement biophysique dont la configuration spatiale est complexe.

[Traduit par la Rédaction] Díaz-Avalos et al. 1593

Introduction

Fire is the most important natural disturbance in forests of
western North America (Peterson 1998; Schmoldt et al.
1999) and a critical component of forest dynamics and bio-
geochemical cycling across a wide range of spatial scales
(Rogers 1996). In the Pacific Northwest region of North
America, fire was historically the dominant disturbance,
with much shorter fire-return intervals in low-precipitation
eastern British Columbia, Washington, and Oregon than in
the high-precipitation west (Agee 1990).

During the 19th century, fire was such a common occur-
rence in northeastern Oregon and southeastern Washington
that the Blue Mountains (Fig. 1) derived their name from the
presence of smoke, which partially obscured the mountains
and lingered in adjacent valleys (Agee 1993). By the early
20th century, fire-return intervals increased and forest area
burned decreased, because fire was largely excluded from
these forests because of a variety of human influences, in-
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cluding fire suppression and fuel modification caused by
timber harvest, roads, and agricultural land (Mutch et al.
1993; Quigley et al. 1996). As a result, stand densities in
forests of the Blue Mountains have gradually increased. This
has led to management concerns regarding the decreased re-
sistance of current stands to insects and pathogens (Hessburg
et al. 1994; Johnson 1994). In addition, longer fire-return in-
tervals have led to higher fuel loads in many areas, thereby
increasing the potential for stand-replacement fires, as op-
posed to understory fires, which were more common prior to
the 20th century (Maruoka 1994; Heyerdahl 1997).

The United States Forest Service is now using prescribed
fire on a limited basis to reduce fuel loads and stem densities
in the Blue Mountains (Mutch et al. 1993; Johnson 1994)
and other areas of the Pacific Northwest (Agee 1998), but
the best and safest way to reintroduce fires in those forests is
still not clear.

The spatiotemporal dynamics of disturbance (Boychuk et
al. 1997; Lertzman and Fall 1998; Lertzman et al. 1998;
McKenzie 1998) is an important consideration in large-
scale, long-term resource management in the Blue Moun-
tains, particularly on public lands where forest landscapes
with “natural” disturbance characteristics are often a man-
agement objective (DeLong 1998). Resource managers need
to know where and when fires are most likely to occur, and
which biological and physical factors are related to the pres-
ence of ignitions. Fire-history studies (e.g., Agee et al. 1990;

Swetnam 1993; Johnson and Wowchuk 1993; Johnson and
Gutsell 1994; Bessie and Johnson 1995) and other recon-
struction methods (Reed 1994; McKelvey and Busse 1996)
are typically used to quantify the spatial and temporal do-
mains of fire in forest ecosystems. Fire-return intervals
based on fire-history studies have been calculated for many
of the common forest associations in the Blue Mountains
(Maruoka 1994; Heyerdahl 1997). However, fire-history
data do not necessarily reflect actual fire occurrence, partic-
ularly in situations in which fires are small and highly dis-
persed (Johnson and Gutsell 1994; McKenzie et al. 2000),
because the proportion ignitions/strikes does not necessarily
correlate with the magnitude of fire effects, as registered in
the fire history. Therefore, data on fire occurrence (e.g.,
Cunningham and Martell 1973) and on the relationship of
the biophysical environment to ignitions (Alvarado et al.
1998) are needed to provide a more complete understanding
of fire disturbance as an input to fire-management planning
(Mills and Bratten 1982; Bratten 1984). As aresult of the
stochastic nature of the spatiotemporal occurrence of lightning-
causedfires, a statistical modeling approach is the best op-
tion to analyse fire incidence data, because inferences based
on raw data are potentially misleading (Besag et al. 1991).
One point of interest is to test if the observed spatial pattern
of fire occurrences can be explained by means of other vari-
ables showing spatial variation. For example, it is known
that some vegetation types are more prone to fire than others
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Fig. 1. Geographic location of the Blue Mountains area.
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and that, for a given vegetation type,fire probabilities vary
because of factors such as elevation. If this is true, then we can
use this information to predict the probability of a lightning-
caused fire at a given spatial location. This prediction pro-
cess is potentially useful for areas where information about
lightning density, temperature, and other variables more
closely related to lightning ignitions is not available.

In this study, we analysed the initiation of lightning-
caused fires in the Blue Mountains as a space–time stochas-
tic process. The data we analyzed refer to lightning-caused
fires that were ignited, detected, and reported in the study
area. Although these fires are a subset of all fires that actu-
ally ignited in the Blue Mountains, we will refer to them as
“ignitions”. The primary objectives of our study were to
(i) calculate the probability of ignition at different locations
in space and time at intermediate scales and (ii ) determine
how specific features of the biophysical environment are
linked to the probability of ignition. The analysis was used
to develop statistically derived maps that can be used to
quantify fire disturbance and landscape patterns and as a po-
tential input to fire-management decisions (e.g., deployment
of fire suppression resources; Mees 1978). First, we present
the basic assumptions of a stochastic mechanism describing
the process of forest ignition in space and in time. Second,
we describe a model-fitting process under the Bayesian para-
digm that uses Markov chain Monte Carlo simulations.
Finally, we discuss the value of our modeling approach for
quantifying the distribution of lightning-caused ignitions in
the Blue Mountains and in other forested regions where igni-
tion occurrence data are available.

Statistical approach and assumptions

Thunderstorms are the generators of lightning, but not ev-
ery lightning strike ignites a fire because of variability in the
moisture, bulk density, and depth of fuels (Kourtz and Todd
1992). Thus, the number of lightning strikes that result in an
ignition is correlated to these fuel quality factors. Despite the
presence of variability in fuels at large spatial scales, it is pos-
sible to assume homogeneity at smaller scales (Rothermel
1972; Andrews 1986). For example, forest stands with com-
parable vegetation, elevation, and other biophysical charac-
teristics can be expected to have similar fuel characteristics
and, therefore, reasonably similar response to lightning
strikes, resulting in a similar probability of ignition within a
stand (Bratten 1984; Quinby 1987).

Based on this general assumption, we divided the time
and the space defined by the study area into pixels. Thus, the
system under study is represented by a three-dimensional
space–time array ofN pixels observed at timest = 1, 2,ÿ, T.
For each pixel–time combination we assume the existence of
a random variableYit taking the value 1 if at least one igni-
tion occurred at pixeli at timet and 0 otherwise. We use the
general relationshipsP(Yit = 1) = µ it andP(Yit = 0) = 1 –µ it
to denote the probabilities of ignition occurrence and their
complement, respectively. It is assumed that the probability
of ignition is constant within each pixel. Our goals are to es-
timate the probabilities of ignitionµ it and to investigate their
relationships with a set of biological and topographical vari-
ables.

The dichotomous nature of the observations in this ap-
proach allows the use of generalized linear models of the bi-
nomial family. Generalized linear models relate the expected
value of the response variableY to a set ofp covariates
through a linear predictorj = Zb, whereZ is a matrix of
covariates andb is a vectorp × 1 of coefficients, and a link
function g, with g(µ) = zTb.

When the response is dichotomous, the most commonly
used link functions are the logit, probit, and complementary
log–log (McCullagh and Nelder 1989). In our analysis we used
the logit link function,ξ = g(µ) = log(µ/(1 –µ)) = zTb, because
it permits interpretation of the risk of ignition in terms of odds.
The relationship between the probability of ignition and the lin-
ear predictor is given byµ ξ= = +−g

T T1 1( ) /( )e ez zb b . In this
paper, we assume that the logit of ignition is linearly related
to factors such as elevation, vegetation, slope, aspect, and
precipitation. Although factors such as stand age, fuel bulk
density, fuel depth, lightning strike density, and air tempera-
ture are closely related to ignition occurrence, lack of data
about them for the study area precluded their use in the
model. Nevertheless, some information about them is ob-
tained through the covariates included in the analysis be-
cause of the presence of correlation between them. For
example, a moist fuel bed may be hit by a lightning strike
without starting an ignition, so fuel moisture and lightning
strike density are negatively associated. Similarly, the num-
ber of lightning strikes that ignite a fire is different for dif-
ferent vegetation covers (Kourtz and Todd 1992). Because of
the time scale of the observed data, we consider that vegeta-
tion cover for any pixel is constant over the time window of
the analysis. The same is obviously true for elevation, slope,
and aspect, whereas precipitation has considerable temporal
variation.

The logistic model in its original form assumes that the
responses at the different pixels are independent (Nelder and
Weddeburn 1972). Although this assumption may be ade-
quate in some instances, neighbouring pixels may have simi-
lar vegetation cover, and they may also be influenced by the
same macroclimatic factors, making it reasonable to suspect
the existence of spatial association between neighbouring
pixels. To accommodate this in the model, we include a ran-
dom spatiotemporal effectψ it

* . Thus, for example, a model
that includes only main effects of vegetation (V), elevation
(E), slope (S), aspect (A), precipitation (R), and the
spatiotemporal effect plus the grand mean (α) has the form

ξ α ψit i i i i it itV E S A R= + + + + + + *

= + + + + +V E S A Ri i i i it itψ

or in the more common notation:

[1] ξ γ ψit i
T

it itR= + +z b

whereb is a vector whose components are the coefficients
related to vegetation, elevation, slope, and aspect andγ is the
coefficient for the effect of precipitation on the linear predic-
tor. Note thatψ α ψit it= + * . The spatiotemporal termψ it can
be considered as a surrogate for unobserved variables that
are correlated in space and time (Besag et al. 1995). Equa-
tion 1 corresponds to the generalized linear mixed models
(GLMM), a model class useful in problems that involve the
mapping of risks (Clayton and Kaldor 1987). It states that
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each pixel has its own baseline risk of ignitione eψ ψit it/( )1+
and that the combined effect of the covariates and time is to
multiply the odds of ignition byez i

T
itRb+γ . Equation 1 may be

compared statistically against models with either a more
complicated or simpler structure by comparing the changes
in deviance. Likelihood-based inferences in GLMM require
numerical integration techniques to obtain the maximum
likelihood estimates, the score equations, and the informa-
tion matrix (Clayton 1997). Standard errors for the parame-
ter estimates are obtained from asymptotic approximations
(Breslow and Clayton 1993). For data with a high proportion
of individuals with null response, the standard error of the
estimates as well as the usual goodness-of-fit tests are not
adequately computed, making the results of the analysis un-
reliable (McCullagh and Nelder 1989; Hosmer and
Lameshow 1989). The hierarchical nature of GLMM makes
the use of Bayesian procedures attractive (Clayton and
Kaldor 1987). An appealing feature of the Bayesian ap-
proach in cases such as our application is that the standard
error of the estimates does not depend on asymptotic as-
sumptions. This diminishes the influence of zeroes in the
vector of responses on the reliability of the results. The
Bayesian approach also allows to assess the uncertainty in
estimated random effects and functions of model parameters
through posterior distributions.

Methods

We analysed data on the starting locations of lightning-caused
fires occurring in the Blue Mountains area (Fig. 1) between April
1986 and June 1993. These data were compiled from the interior

Columbia River basin integrated assessment (Quigley et al. 1996).
The total number of lightning-caused fires between those dates was
4482, representing >80% of the total number of fires (the others
being human caused) and >94% of the area burned in the Blue
Mountains. Starting location and estimated date of ignition are
available for each fire. Clustering in both space and time is appar-
ent; most of the ignitions in the Blue Mountains occur during the
summer months (Fig. 2), with low incidence during the rest of the
year (Agee 1994).

The exact locations at which the lightning ignitions occurred
were known, and a point process model (Karr 1986; Diggle 1983)
with an intensity functionλ(x,y) depending on covariates was also
considered as a possible approach. Point processes have been sug-
gested as an alternative to avoid the problem of obtaining scale-
dependent patterns when analyzing occurrence of events in space
and time (Wolpert and Ikstadt 1998). However, when the intensity
function includes covariates the resulting maps depend on the reso-
lution of the covariate information. Another drawback is that hy-
pothesis tests for the parameter estimates of the intensity functions
are based on asymptotic assumptions valid only as the study area
size becomes infinite, and restrictions have to be imposed toλ(x, y)
to ensure that the likelihood function has only one maximum
(Cressie 1993).

The study area was partitioned in pixels of 2.5 × 2.5 km, result-
ing in a total ofN = 8089 pixels for the Blue Mountains. The time
axis was divided into quarterly intervals as follows: 1 March – 31
May (spring), 1 June – 31 August (summer), 1 September – 30 No-
vember 30 (fall), 1 December – 28 February (winter), resulting in a
total of T = 30 quarterly intervals. For each pixel–time combina-
tion we assigned the value 1 if at least one ignition occurred there
and 0 otherwise. Note that this only implies that fire was present in
that space–time location and not that the whole pixel burned. Sta-
tistical methods to predict the burned area are beyond the scope of
this paper.
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Fig. 2. Spatial pattern of ignition occurrence from April 1, 1986, to September 9, 1993 (a), and cumulative distribution in time of igni-
tion occurrence (b) in the Blue Mountains area. Vertical lines correspond to June 1 of every year. Latitude and longitude scales are in
kilometers.
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Using digital elevation and vegetation maps available for the
area, we used a geographic information system (GIS) to attach data
about vegetation type, elevation, and slope at each pixel center.
Precipitation was incorporated from a data base of mean monthly
precipitation for the area, estimated with the PRISM model (Daly
et al. 1994), which uses regression and digital elevation maps to in-
terpolate data from existing weather stations over complex terrain.
These interpolated precipitation data have been used in a wide va-
riety of coarse-scale models (Lenihan et al. 1998; Ohmann and
Spies 1998; McKenzie and Halpern 1999; McKenzie et al. 2000).

Choosing an adequate pixel size is a problem similar to that of
choosing class length in histograms. Large pixel size produces loss
of information about multiple ignition occurrences, whereas too
small pixel size makes hard to detect any spatial pattern in the
data. In our case, the selection of the 2.5 × 2.5 km scale was done
to match the resolution of the digital vegetation map, which was
the coarsest covariate map available. The idea was to make a trade-
off between resolution and spatial homogeneity for the covariates
used in the model. Digital maps available for the other covariates
used in the analysis were converted to the 2.5 × 2.5 km scale using
GIS software. On the time axis, quarterly time intervals were cho-
sen to differentiate periods with high ignition incidence (summer),
low ignition incidence (winter), and two transition intervals (fall
and spring). Multiple ignition occurrences in a single pixel–time
combination were never greater than two. In the context of our
model this produces negligible differences in the estimated ignition
probabilities.

There are 21 vegetation types represented in the Blue Moun-
tains, based on the classification used by the USDA Forest Service
for the Columbia River basin (Clarke and Bryce 1997). Because
the categorical nature of this variable would result in an unaccept-
ably large number of coefficients for reasonable model interpreta-
tion, we grouped vegetation types into classes to reduce the
number of parameters (Table 1). Aggregation of vegetation classes
is based on similarities in physiognomy, fuel properties, and fire ef-
fects.

Because the possible loss of representativity of the covariates at
the scale we used, we performed correlation tests between the
covariate values associated to the actual location of each ignition in
the data base and the covariate values of the associated pixels for
each quarter. The results gave correlation values between 0.62 and
0.87 (p < 0.005), from which we conclude that the pixelized data
base is providing a fair amount of information about the actual val-
ues of the covariates.

Our approach to model fitting is in the Bayesian context, that is,
if u is a vector ofk components containing all the parameters in the
model, statistical inferences aboutu are based on the posterior dis-
tribution:

[2] f y
L y

L y
L y( | )

( , ) ( )

( , ) ( )
( , ) ( )u

u u

u u u
u u= ∝

∫
π

π
π

Θ

d

where π( )u is the prior distribution of the model parameters, re-
flecting the researcher’s “prior” belief about plausible values foru
without knowledge of the data, andL(u, y) is the likelihood of the
data givenu (Bernardo and Smith 1994). The statement in eq. 2 is
known as Bayes theorem. Bayesian inferences about theith com-
ponent ofu are done using the marginal posterior distribution, ob-
tained by integrating eq. 2 over the remaining components ofu. In
a univariate case for example, we may use the mode of the poste-
rior distribution as a point estimate ofu, and an interval based on
percentiles of such a distribution (known as credible interval) can
be used to summarize its variability.

Obtaining the posterior distribution ofu analytically is not al-
ways possible, and most of the time one must resort to numerical
integration to compute expectations and other functions of the
model parameters. One method is by simulating samples from the

posterior distribution of the parameters and approximating the nec-
essary integrals numerically using Markov chain Monte Carlo
(MCMC) techniques (Gilks et al. 1996). With those simulated sam-
ples, point estimates of the model parameters as well as their stan-
dard errors are obtained by computing their sampling moments.
For a good introduction to the use and theoretical fundaments of
MCMC methods, the reader is referred to Gelman et al. (1995).

In the first part of the analysis, we fitted a model of the form of
eq. 1 for each one of the 30 quarters, that is, we fitted the follow-
ing model:

[3] ξ γ ψi i
T

i i iR= + + ′ +z x ub

whereb is a vector with the coefficients related to the main effects
of vegetation, elevation, slope and aspect,γ is the coefficient for
the effect of precipitation, andu is a vector of coefficients related
to the first-order interactions between vegetation, elevation, slope,
aspect, and precipitation for each quarter. This transversal explor-
atory analysis was done to detect possible trends and seasonality in
the parameters and to gain insight about the form of a general
model for the space–time domain. We assumed a flat, non-
informative prior distribution (Box and Tiao 1973) for the non-
spatial parameters in our model, which allows them to be assigned
any arbitrary initial values. The spatiotemporal term is considered
as a surrogate of unobserved covariates showing smooth spatial
variation. Equation 3 implies that the odds of ignition are affected
multiplicatively by factors acting at large scale (e.g., covariates) as
well as factors acting at shorter scales (spatial term). Following
Besag et al. (1991), we assumed a Gaussian pairwise difference
prior distribution for the spatiotemporal term, with precisionλ:

[4] π ψ λ λψ ψ( ) | |∝ −0.5 0.5 0.5eN T

W W

wherec = (ψ1, ψ 2 , ÿ, ψ N) is the vector of spatiotemporal compo-
nents,W is a matrix withWii = υi , Wij = –1 if pixels i and j are
neighbours andWij = 0 otherwise, and |W| denotes the product of
the nonzero eigenvalues ofW. We are weighting equally each di-
rection, because the geographic scale we are working it is not de-
tailed enough to detect possible anisotropies. The prior density in
eq. 4 belongs to the class of nonstationary Gaussian intrinsic auto-
regressions and may be considered as the stochastic equivalent of
linear interpolation (Besag et al. 1991). Because both the columns
and rows ofW add to zero, eq. 4 is improper. However, the full
conditional densities necessary to make statistical inferences about
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Vegetation
class Vegetation type

1 Mixed grass, agricultural land, and shrubs
2 Seral shrub, aspen
3 Subalpine herbaceous, alpine tundra
4 Engelmann spruce–subalpine fir, lodgepole pine,

whitebark pine
5 Interior Douglas-fir
6 Grand fir
7 Interior ponderosa pine
8 Bluebunch wheatgrass, western juniper – big

sagebrush – bluebunch wheatgrass, Idaho
fescue – bluebunch wheatgrass, crested
wheatgrass, Utah juniper – big sagebrush –
bluebunch wheatgrass

9 Mountain big sagebrush, Wyoming big sagebrush,
low sagebrush, salt desert shrub

Table 1. Vegetation classes used in the analysis are derived from
vegetation types used in the Columbia River basin assessment
(Clarke and Bryce 1997).
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the ψ i , i = 1, 2,ÿ, N, are well defined (Besag et al. 1995). For the
precision we assumed aΓ(1, 1) prior density, which allows initially
low values forλ and, therefore, high variability inc. The model is
completely specified by further assuming independence between
the components ofu = (b, γ, u, c, λ) and by assuming that the ob-
servationsYi are conditionally independent. The posterior density
of the parameters is proportional to

[5]
e

e

y R

R
i

N
i i

T
i i

T
i

i
T

i i
T

i

( )z x u

z x u

b

b

+ + +

+ + +
= +








∏

γ ψ

γ ψ11 



× −( | | )λ λψ ψ0.5 0.5 0.5eN T

W W

× − −( )λ λa b1 e

where the first term is the likelihood for the parameters given the
sample. MCMC methods are usually more efficient if one works
with the full conditional distribution of one set of parameters given
the others. For any componentuk of the vector parameteru, these
full conditionals are proportional only to those terms of eq. 5 that
include uk. From eq. 5, the full conditional distributions are

[6] π
γ ψ

( , | ( , ) )
( )

b b
b

b
u u

z x u

z x u
−

+

+ + +
=

∝
+

e

e

y

R
i

i i
T

i
T

i
T

i i
T

i11

N

∏












[7] π γ γ
γ

γ ψ
( | )

( )
−

+ + +
=

∝
+











∏ e

e

y R

R
i

N
i i

i
T

i i
T

i11
z x ub

[8] π ψ ψ
ψ

γ ψ
υ( | )

( )

i i

y

R

i i

i
T

i i
T

i

−
+ + +

−∝
+











e

e
e 0.5

1 z x ub
i i iλ ψ ψ( )− 2

[9] ( | ) ~ , ( )λ λ υ ψ ψ−

=
+ + −











∑Γ a N b i

i

N

i i0.5 0.5
1

2

where the notation (·*·–) means the conditional distribution of the
one set of parameters given the rest of the components in the
model. In general, if the full conditionals are proportional to the
likelihood of the observations and if not all the responses are zero,
they are proper densities (Zellner and Rossi 1984; Ibrahim and
Laud 1991). When using a flat noninformative prior for the coeffi-
cients of the linear predictor, the resulting full conditionals are pro-
portional to the likelihood of the data. Thus, eqs. 6 and 7 are
proper densities. Equation 8 corresponds to a density that is pro-
portional to the likelihood of the responses times a Gaussian kernel
and is, therefore, proper. A FORTRAN program was written to
simulate samples from the full conditionals. To avoid numerical
problems during the MCMC computations, elevation values were
normalized to

[10] d = −elevation
396.36

1450

where the value 1450 is the mean elevation of the study area in
metres and 396.36 is the standard deviation for the elevation in
metres. We used the Hastings (1970) algorithm to update the
nonconjugate distributions (eqs. 6–8), generating the candidate val-
ues with a Gaussian density centered at the current value for each
parameter. The dispersions of these candidate generators were
tuned to get acceptance rates in the 25–60% range, but because of
the different number of ignitions at each quarter, the tuning values
were different for each time period. We ran five independent chains
for each time period, each one with a length of 10 000 iterations.
The burning in time was taken as 5000, and we kept every fifth ob-
servation of the remainder of each chain for the posterior analysis.
Thus, our posterior analysis is based on five samples of size 1000
for each parameter. Inferences based on MCMC simulation assume

that the Markov chain converges to the target distribution, and it is
critical to assess if we have such convergence. In our application,
we checked convergence using the method described by Gelman
and Rubin (1992) and Besag et al. (1995).

In the Bayesian framework, model selection and goodness of fit
assessment are done based on the posterior and the predictive dis-
tribution of a discrepancyD, respectively (Gelman et al. 1996). For
binary variables, the discrepancy measure more commonly used is
the deviance. Denoting byη( )l the linear predictor value at thelth
iteration of the MCMC, sample values from the posterior deviance
were computed as

D yl T l

i
i
l( ) ( ) ( )log( )= − − −∑2 2 1η µ

The posterior deviance values were used to compute credible inter-
vals to compare between models with different covariate structures.
The use of posterior deviance samples allows comparison between
non-nested models. Model selection started with a model with
main effects plus first-order interactions, followed by deletion of
nonsignificant terms one at a time. A term in the model was re-
moved only if its removal did not produce a significant increase in
the posterior deviance.

We assessed model adequacy by computing the Bayesianp val-
ues (pb) for the predictive deviance using the algorithm described
by Gelman et al. (1996). According to these authors, values ofpb
higher than 0.1 indicate an acceptable fit. Significance tests for the
model parameters were based on credible intervals obtained from
the MCMC simulation. These credible intervals also allow us to
make paired comparisons between the model parameters whenever
relevant.

Extension of the model to the space–time
domain

A model that is useful for short-term predictions of ignition
probability requires extending eq. 3 to the space–time domain. The
transversal analyses discussed in the previous section provide an
overview of the dynamic nature of ignition probability in the Blue
Mountains. To construct this space–time model, it is important to
consider the possibility of time dependence of the estimates, be-
cause the effects of location and time on ignition probability do not
seem to be independent. Another option is to consider these param-
eters as fixed in time and to accommodate the space–time interac-
tion through the inclusion of a spatiotemporal term,ψ it , in the
model. This leads to a model of the form of eq. 1. To fit this
model, we assume again a flat noninformative prior density for the
covariate effects. We assume a Gaussian pairwise prior for the
spatiotemporal effect, now in three dimensions. The conditional
density ofψ it given the rest of thec is proportional to

[11] λ υ λ ψ ψ0.5 0.5e− −it it it( )2

In this case ψ it is a weighted average of the values of the
spatiotemporal effect at neighbouring pixels in space and in time,
and υit is the number of those pixels. For seasonal data, a second
option perhaps more adequate is to consider neighbours of orderS
over the time axis. We used this option withS = 4 to test the pre-
dictive performance of the model. For the descriptive part of the
analysis, however, we usedS = 1 to avoid the loss of the first four
and the last four quarters. We again assume aΓ(1, 1) prior density
for the precisionλ. The rest of the model structure is the same as
the one described previously. The full conditionals in this case are

[12] π
γ ψ
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The samples from these full conditional distributions were simu-
lated in the same manner as for the nonspatial model.

An attractive feature of the Bayesian approach is the potential
for predicting ignition probability directly from the MCMC algo-
rithm. We now consider predictions over the next three quarters
T + 1, T + 2, andT + 3 by updating all the parameters in the model
for the system of 8089 ×T pixel–quarter combinations at each cy-
cle of the MCMC procedure. At the end of thelth basicN × T
MCMC cycle, we haveb( )l , γ ( )l , and ψ it

l( ) and compute the corre-
spondingµ it

l( ) from ξit
l( ). Because the predictive distribution of the

response in pixeli at timesT + j is Bernoulli (µ iT j+ ) and because the
effect of the covariates is constant over time, forj = 1, 2, 3 it suffices
to generate a sample from the distributionψ iT j

l
+

( ) ~ N iT
l l( , / )( ) ( )ψ λ+1 1 ,

where

[16] ψ
υ

ψ ψ ψ
δ

iT j
l

i
iT j S
l

iT j S
l

iT j
l

k
+ + − + − +
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=

+
− +( ) ( ) ( ) ( )
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2 2
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∑
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
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and from here compute the corresponding realization of the pre-
dicted probability of ignition using the inverse logit transformation.

Here, {k ∈ δi} denotes the set of pixels in the neighbourhood of
pixel i, υi is the number of those pixels andS is a seasonal lag with
S = 1 if there is not seasonal effect. The predictive performance of
our model was tested using the data of the first 27 quarterly peri-
ods as a training set and predicting the logarithm of odds (ξit) for
T = 28, 29, and 30, which correspond to the spring, summer, and
fall of 1993. These predictions were compared with the values of
ξit estimated using the complete data set.

Results and discussion

Figure 3 shows, for the study area and time period, the
frequency of ignitions (Fig. 3a), the number of pixels at risk
(Fig. 3b) and the empirical odds of ignition for each of the 9
vegetation classes (Fig. 3c). Because these empirical odds
are computed from the proportion, number of ignitions/num-
ber of pixels, they represent an analogous quantity to the
per-capita risk in the epidemiology framework. Classes 1, 2,
8, and 9 showed a relatively high frequency of ignitions, but
the number of pixels at risk in those classes is also high, re-
sulting in low values for the odds of fire. On the other hand,
class 4 showed a relatively high number of ignitions spread
in a comparative low number of pixels at risk, raising the
value for the odds of ignition in this class. Classes 5 and 6
showed a similar relationship between number of ignitions
and the number of pixels at risk. Despite showing the high-
est frequency of ignition occurrences, the number of pixels
in class 7 is also high, decreasing the value of the empirical
odds of ignition. Figure 4 shows the relationship between
the empirical odds of ignition and the elevation for each veg-
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Fig. 3. Presence of lightning-caused ignitions in the Blue Mountains: (a) proportion of ignitions by vegetation class; (b) proportion of
area covered by vegetation class; and (c) empirical odds of ignition by vegetation class.
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etation class. Except for classes 3, 4, and 5, the rest show an
overall positive trend with elevation. This is, in part, the re-
sult of a low number of pixels at risk and perhaps the in-
creased incidence of lightning strikes at high elevations.

The temporal variation of the empirical odds of ignition
for the nine vegetation classes aggregated by quarterly peri-
ods is shown in Fig. 5. For all the classes it is evident the
presence of a seasonal component, with high values during
the summer and minima in winter. The first peak corre-
sponds to the summer of 1986. The height of the peaks is
somewhat stable along the time period except for 1986 and
1989. These were years of high incidence of lightning-
caused ignitions in the Blue Mountains. Because inferences
based on the empirical odds of ignition are potentially mis-
leading, we will focus on the results of the statistical model
fitted to the data.

The model selection procedure led in all the cases to mod-
els that included only the main effects for vegetation, eleva-
tion, slope, and precipitation plus the spatial termc. The pb
values were greater than 0.16 in all cases. It is surprising
that terms related to aspect were absent in the final models,
because this covariate is related to radiation received and,
therefore, to fuel moisture. Exclusion of aspect from the fi-
nal models may be a consequence of the low resolution for
this variable imposed by the pixel size used in the analysis.

Analysis of risk factors
The time trend for the 95% posterior credible intervals for

the different vegetation classes is shown in Fig. 6. None of

the plots shows a seasonal pattern, and the coefficient esti-
mates mostly fluctuate around a particular mean level of
each class. When significant, they imply that for a given
pixel the effect of being covered by vegetation classVk is to
either increase or decrease that pixel’s odds of ignition by a
factor of ebk , provided we keep the other variables at the
same level.

Table 2 shows the average over time of the factor by
which each coefficient affects the odds of ignition for the
different vegetation classes. For pixels with equivalent eleva-
tion, slope, and precipitation, the overall effect of classes 1,
7, and 9 is to reduce the odds of ignition to 33.0, 61.4, and
10.8%, respectively. For the remaining vegetation classes,
their effect generally is to increase the odds of ignition as
much as 955%. Class 4 has, by far, the highest risk of light-
ning ignitions.

Figure 3c shows that, before correcting for the other
covariates, the ranking of the vegetation class in terms of
odds of ignition is {9< 1 < 3 < 8 < 2 < 7 < 4 < 5 < 6}.From
the data in Table 2 it is possible to rank the vegetation
classes in terms of their risk of ignition. In this case, the
overall ranking of vegetation classes for ignition probability
(9 < 1 < 7 < 5 < 8 < 6 < 2 < 3 < 4) wasmaintained through
nearly all quarters. The different ranking obtained from Ta-
ble 2 is due to the correction that the model fitted makes for
the effect of the rest of the covariates as well as the spatial
term in the model. Filtering this effect is important for cases
where the data will be used in decision making processes
and is a benefit obtained from fitting a model.
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Fig. 4. Empirical odds of ignition by elevation for the nine vegetation classes. Plots are based on a 30-bin partition of the elevation
range obtained from a digital elevation model for the study area.

I:\cjfr\cjfr31\cjfr-09\X01-089.vp
Friday, August 31, 2001 9:18:23 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



Values in Table 2 are directly related to how likely a pixel
is to be disturbed by fire and initiate a successional process.
The resulting plant composition after disturbance will de-
pend on the original plant composition as well as on the seed
bank. The odds for a lightning-caused ignition are highest in
pixels classified as lodgepole pine (Pinus contortaDougl. ex
Loud.), whitebark pine (Pinus albicaulis Engelm.), and
Engelmann spruce (Picea engelmanniiParry ex Engelm.) –
subalpine fir (Abies lasiocarpa(Hook.) Nutt.), which to-
gether comprise class 4. In these forest types, successful
postfire germination produces forests with similar species
composition (Keane et al. 1996b), so vegetation class of the
pixels tends not to change much over time. For other vegeta-
tion types, fire disturbance may alter the dominant vegeta-
tion considerably; for example, grand fir (Abies grandis
(Dougl.) Lindl.) (class 6) typically is dominant only if fire is
excluded (Hall 1977). Our results show that pixels covered
by this vegetation class have high odds of ignition, suggest-
ing that the relative presence of these species in the Blue
Mountains would decrease in the future if fire occurrence in-
creases.

The 95% credible intervals for elevation, slope, and pre-
cipitation are shown in Fig. 7. The estimates are always neg-
ative for elevation and precipitation, indicating that a unit
increase in those variables decreases the odds of ignition.
These coefficients for elevation oscillate around a mean level
of –2.0, with the highest deviations from this value occur-
ring during spring and fall 1988 and 1989. For the model-
fitting process, elevations were standardized by creating the
covariated in eq. 10. Because the coefficients for elevation

are always negative, increases in elevation result in
decreased odds of ignition. The highest values of this coeffi-
cient always occurred in the summer months, indicating that
the probabilities of a lightning ignition during warm weather
are minimally affected by moderate changes in elevation.
The lowest values, with median values as low as –9.026 in
1989, generally are associated with spring. The highly nega-
tive values during this season are related to the presence of
snow cover and higher precipitation at high elevations.
There is no significant difference between the estimates for
spring and fall.

The estimates for slope were mostly nonsignificant, and
this term should have been removed most of the time by our
model selection procedure. However, the slope effect was
retained in the models to allow a comparison of the esti-
mates over time, because they were significant on some oc-
casions. The lowest estimates for this covariate also occurred
in the spring quarter. The effect of precipitation oscillates
around –0.04, with the highest estimates during the summer
and lowest estimates in fall and spring. The spatial term in
the model was significant most of the time and showed a
clear seasonal pattern over time and for fixed locations. The
trajectories for a random sample of 10 pixels showed a sea-
sonal pattern, but their peaks and valleys did not always co-
incide in time, suggesting the presence of an interaction
between location and time.

Space–time model results
Table 3 shows the results of the model selection procedure

for the space–time extended model. These results are consis-
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Fig. 5. Seasonal variation of the empirical odds, based on a 31-quarter partition of the time window. The first quarter corresponds to
spring 1986.
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tent with those of the transversal analysis in the sense that
the selected model includes only the main effects plus the
space–time term. The Bayesianp value for the full model
was 0.184, which suggests that the model provides a reason-
able description of the data (Gelman et al. 1996). Residual
analysis (not shown here) does not indicate a systematic pat-
tern, and although 1582 space–time locations have residuals
that could be considered as outliers, they represent a small
proportion (0.65%) of the total. The outliers correspond to
pixels covered by vegetation classes 6 and 7 during summer
but with small posterior probability of ignition, because their
neighbours belong to low-probability classes. A high resid-

ual would be expected when a positive response occurs in a
cell with a low estimate ofµ it (Agresti 1978), as is the case
here.

The 95% posterior confidence intervals for the covariate
coefficients are shown in Table 4. Using this spatiotemporal
model, the ranking of vegetation classes in terms of ignition
probability is 9 < 1 < 8 < 2 < 7 < 5 < 3 < 6 < 4(compared
with 9 < 1 < 7 < 5 < 8 < 6 < 2 < 3 < 4 in thetransversal
analysis and to 9 < 1 <3 < 8 < 2 < 7 < 4 < 5 < 6with the
raw data.). Because this space–time model assumes that the
covariate effects are constant over time, the ignition-risk or-
der holds for any time. Thus, for a given pixel, the term
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Fig. 6. The 95% posterior credible intervals for the coefficients related to the different vegetation classes, as estimated from the longi-
tudinal analysis. The white square inside each interval corresponds to the posterior median. The sequences SFS... denote summer, fall,
spring, starting with summer 1986. Winter is not included.

Vegetation
class Minimum

First
quantile Median Mean

Third
quantile Maximum

1 0.003 0.153 0.330 0.501 0.405 6.609
2 0.007 0.591 1.298 3.269 2.284 24.810
3 0.263 1.810 2.788 5.352 4.700 34.410
4 3.327 5.853 9.554 22.790 22.000 118.400
5 0.025 0.617 1.189 2.441 1.498 26.430
6 0.242 1.652 2.094 5.930 4.328 66.050
7 0.099 0.468 0.614 1.203 0.810 13.160
8 0.078 0.739 0.905 5.314 1.642 91.400
9 <0.001 0.034 0.108 0.203 0.184 6.389

Table 2. Summary statistics for the median values of the exponential of the coefficients related
to the vegetation classes over time.
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eV E Si i i+ + is the contribution to the odds of ignition by the
ecological and environmental characteristics of the pixel.
The termeRit it+ψ captures the contributions of local charac-
teristics (e.g., precipitation) as well as other unobserved
variables with spatiotemporal variation.

Distribution of ignition probability in space and time
As expected, the risk of ignition is highest during the

summer months because of low fuel moisture and high cap-
ture of solar energy by ground fuels and live vegetation. The
shading pattern in the posterior probability maps shows sub-
stantial interannual variation, except in summer quarters, in
which the pattern is constant (Fig. 8). The posterior proba-
bility maps show the presence of areas with low risk
throughout the year. These low risk areas are associated with
vegetation classes 1, 7, and 9 and elevations below 1300 m,

encompassing ponderosa pine, shrublands, grasslands, and
agricultural land.

The highest posterior probabilities of ignition occur in
pixels with vegetation class 4 (lodgepole pine, whitebark
pine, Engelmann spruce, subalpine fir) and at elevations in
the range 1400–1800 m. Although the tree species found in
this vegetation class range up to 2300 m, ignition probability
was found to be higher at the lower elevational range of their
distribution. During fall and spring, the probability of igni-
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Fig. 7. The 95% posterior credible intervals across time for the coefficients related to elevation, slope and precipitation, computed from
the longitudinal analysis. The open square inside each interval corresponds to the posterior median. The sequences SFS... denote sum-
mer, fall, spring, starting with summer 1986. Winter is not included.

Model
5%
quantile Median

95%
quantile

Bayesian
p value

ψ 22 487 25 016 25 877 0.681
V + E + S + ψ 20 539 21 262 21 812 0.137
V + E + R + ψ 20 806 21 189 21 629 0.441
V + S + R + ψ 21 820 22 173 22 917 0.167
E + S + R + ψ 23 179 23 793 24 570 0.119
V + E + S + R + ψ 19 205 19 606 19 924 0.184

Table 3. Posterior quantiles for the deviance of some space–time
models tested.

Parameter
5%
quantile Median

95%
quantile

Class 1 –0.724 –0.586 –0.471
Class 2 –0.157 0.018 0.137
Class 3 0.093 0.310 0.590
Class 4 0.489 0.571 0.735
Class 5 0.211 0.290 0.377
Class 6 0.200 0.340 0.507
Class 7 –0.031 0.037 0.121
Class 8 –0.287 –0.157 0.009
Class 9 –7.106 –2.228 –2.280
Elevation –3.663 –3.234 –2.650
Slope –0.013 –0.006 0.000
Precipitation –0.014 –0.011 –0.008
λ 0.109 0.119 0.121

Table 4. Posterior quantiles for the fixed effects and
the precision in the spatiotemporal model.
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tion is in general higher in the southern Blue Mountains than
in the northern part, most likely because of generally lower
precipitation, lower snow-cover duration, and higher occur-
rence of lightning strikes in the south (Krider et al. 1980;
Maruoka 1994; Heyerdahl 1997).

The 95% posterior predictive median forξ i28, ξ i29, and
ξ i30 (plus signs) in a sample of four pixels, computed from
eq. 16, are shown in Fig. 9 when seasonality is ignored (S =
1, plus signs) and when seasonality is considered (S = 4,
solid circles). The asterisks in the plots are the posterior
means forξ it; t < 28, obtained using the complete data set,
and the solid lines are the 95% credible bands for the com-
plete data set. Predictions computed without seasonality in-
duce a linear trend forξ it. The potential problem with this is
that the predicted risk of ignition may be over- or under-
estimated for two- and three-step-ahead predictions. For the
one-step-ahead predictions, the credible bands contain the
predicted estimates in the four cases shown here, but the
two- and three-step-ahead predictions are over- and under-
estimated in three of the four cases. This is a well-known
problem when using second-order differences to make fore-
casts (Wei 1990). Including seasonality in the predictive dis-
tribution of ξ it improves the quality of the predictions, in the
sense that predictions calculated assuming seasonality retain
the “up–down” pattern obtained with the full data set, and
the credible bands now contain a higher number of the pos-
terior predictive means forξ it.

Although not shown here, the predictive posterior maps
for 1993 resemble the map estimated for that year with a full

data set. Because we are predicting an unobserved variable,
there is no direct way to test the quality of the predictions
obtained with the model, and therefore, these predictions,
like those obtained with other models, must be used with
some caution.

Conclusions
The model we have proposed in this paper is of general

applicability to spatiotemporal data for which one hasi = 1,
2, ÿ, N locations in space andt = 1, 2, ÿ, T time intervals.
The advantage of our modeling approach is that the shape of
the pixels is irrelevant for the statistical estimation proce-
dure. The only relevant information is ignition occurrence at
that location in a fixed time interval and the neighbourhood
structure of the data. Thus, models of the form of eq. 1 are
still applicable for ignition data associated with irregularly
shaped areas (e.g., counties, administrative units). As with
any gridded data set, one should be aware that the risk maps
obtained with models of the type proposed here may be sen-
sitive to changes in interval size of pixels and time. This
problem is similar to that of changing the number of classes
in a histogram. However, because our interest is in mapping
the risk of ignition and not the exact locations of ignitions, it
is important to determine the spatiotemporal pattern, a pri-
mary objective of our model. Another point to consider is
that, because of the inclusion of spatial covariates, alterna-
tive methods such as point processes produce maps of equiv-
alent resolution because of the dependence of the intensity
function on the covariate scale.
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Fig. 8. Posterior mean estimates for the probability of ignition in the Blue Mountains for the summer months of 1986–1989 using the
space–time model.
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Our analysis of ignition-occurrence data for the Blue
Mountains provides important quantitative information on
how several covariates, or risk factors, affect the probability
of ignition for a given location and time. Despite the high
spatiotemporal variability in ignition probability, the changes
in the posterior deviance show that the inclusion of
covariates accounts for a significant amount of this variabil-
ity, and the inclusion of a spatiotemporal correlated term im-
proves the model fit. Theassumed presence of unobserved
variables is not uncommon, but previous applications of
logistic regression in forest-ignition modelling (e.g., McKelvey
and Busse 1996) haveignored the possibility of a spatially
correlated term in the model. Their approach was to take a
random sample of pixels to meet the independence assump-
tions for the response, but this approach loses all the infor-
mation contained in the neighbouring structure of the data.
Whenever the presence of spatial and temporal correlation is
suspected, it is generally advisable to include a spatial term
in the model. For the vegetation classes analysed, the differ-
ent odds of ignition reflect their differential susceptibility to
lightning strikes due to fuel characteristics and other factors
that affect a fire start. The absence of interactions between
the covariates in the models implies that the ranking ob-
tained for the different vegetation classes is consistent across
a range of different elevations, slopes, and precipitation and
is independent of location in the Blue Mountains.

The probability of ignition in the Blue Mountains has con-
siderable spatial and temporal variability. Spatial variability
is related to the distribution of different vegetation types and
to topographic patterns as well as other unobserved variables

not included in the model. The highest probabilities of igni-
tion after correcting for elevation, slope, and precipitation
are associated with pixels covered by vegetation classes 4
(lodgepole pine, whitebark pine, Engelmann spruce, subal-
pine fir), 3 (subalpine herbaceous, alpine tundra), and 6
(grand fir). Although vegetation class 4 is the most flamma-
ble, it covers high elevation and precipitation zones, result-
ing in moderately high raw odds of ignition. Because raw
odds do not consider the effect of the covariates, vegetation
4 shows the highest fire probability after the corrections in-
duced by the model. Probability of ignition decreases with
increasing elevation and slope, despite the fact that the num-
ber of lightning strikes increases with elevation. This is
probably a consequence of higher precipitation and lower
temperatures at high elevations. In the time domain, varia-
tion in ignition probability is related partly to variation in
precipitation. Another portion of the spatiotemporal varia-
tion is explained by the spatial term included in the model.
This effect may be related to unobserved variables (e.g.,
temperature, fuel quantity, etc.), so it is difficult to infer a
specific biophysical cause.

The second-difference prior assumed for the predictive
distribution of the space–time component in the model has
some potential disadvantages, but as we showed, it can be
replaced by other constructions such as seasonal second dif-
ferences. The resulting predictions captured the seasonal pat-
tern observed with the estimates from the full data set and,
in general, are useful for short-term forecasts. A potential
improvement would be to replace the second-difference
structure by a structure with random coefficients; these coef-
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Fig. 9. Posterior predictive 95% credible bands for quarters 28, 29, and 30 using quarters 1–27 as a training set for a sample of four
pixels. Predictions made withS = 1 (no seasonality) are shown as plus signs. Predictions made with seasonality (S = 4) are shown as
dots. Asterisks are the posterior mean estimate obtained with the training data set.
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ficients could be considered random variables with a prior
distribution of their own.

The predictive potential of the space–time model pre-
sented here has applications for forest managers who need
information on the distribution of ignition occurrence and
associated fire effects (Boychuk et al. 1997; Lertzman et al.
1998). The resulting ignition probabilities can be linked with
other models that require such probabilities as an input
(Mills and Bratten 1982; Keane et al. 1996a; Lenihan et al.
1998). A potential drawback of the model is the amount of
computational time using the MCMC method to estimate pa-
rameters. However, a one-time analysis of a large data set
can provide the basis for incorporating fire disturbance in
long-term management for large geographic areas, thereby
making it a good investment of time and effort.
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