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Introduction 
The USGS-BRD team at Olympic National Park is helping the park build a long-term 
ecological monitoring program. Our goals are to create a conceptual structure for the 
design of monitoring, to explore sampling variation and determine attributes that can be 
sampled cost-effectively, and to develop an umbrella sampling plan including an 
integrative and feasible sample design. Developing an umbrella-sampling plan is an 
important initial step in developing a monitoring program to ensure spatial integration of 
individual monitoring components. Further, the evaluation of sampling variability is a 
critical step in selecting attributes of natural systems to monitor and to avoid investing in 
costly or fruitless monitoring ventures. Based on these premises, we recently completed 
three years of data collection to support recommendations we will make to the park.  We 
have data sets describing annual and spatial variation of several animal species, plant 
communities and populations, as well as data evaluating grid-based versus stratified 
random sampling schemes.  

In recent years we have become aware of changing perspectives of how best to determine 
the adequacy of a sample to detect change. Early on we planned to use regression-based 
methods to examine power of various sampling efforts to detect a specified effect. More 
recently, we have thought about detecting change from a repeated-measures ANOVA 
perspective. Most recently, be have become aware of paradigms not grounded in a 
traditional hypothesis-testing framework.  For example, we might evaluate sampling 
sufficiency to detect extreme or unusual values in a data set over time. 

Consequently, we decided to convene a small group primarily of biometricians and 
members of the park’s resource management staff to discuss theoretical and practical 
answers to the following questions: 

What is the question? How do we frame the question of change detection? 
 
How much sampling is enough? When is power analysis useful? What other means are 
there to determine ‘n’ a priori? 
 
Where shall we sample? What is an effective sample frame for distributing plots on the 
landscape? 

How often is enough? What temporal sampling frames might we consider given observed 
values of annual variation? 

The workshop was characterized by a lively and productive discussion around all of these 
questions. Although focused on the particular circumstances at Olympic National Park, 
many of the answers have more general applicability. The answers to each emerged 
throughout the meeting so the meeting will be summarized by question rather than 
chronologically. A list of workshop participants is given in Appendix A. 

 
What is the question? 
Paul Geissler and Eric Rexstad addressed this question by each listing methods 
commonly used to detect change, then giving examples of power analyses based on a 
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traditional hypothesis-testing framework (Geissler) and methods developed to identify 
extreme values in data time-series (Rexstad). 

Standard Methods Used to Detect Change 
• Compare Period Means – This approach is easily understood but cannot be used if 

sites or methods change among periods.  You judge that there has been a change 
using years within periods as replicates.  That is, if the difference between periods 
is more than you would expect based on the within period differences, then you 
conclude there is a change. 

• Regression:  Linear, Exponential, Multinomial or Route – Linear regression rarely 
fits the data well, but is used to estimate an average rate of change. It can be used 
when sites or methods change.  Usually a log transformation is used to fit an 
exponential regression model, which may better detect growth or decline of 
populations with constant rates of change. To accommodate the repeated annual 
measurements on the same transect (route), the route regression approach fits a 
linear regression on the log scale (exponential model) for each route and then uses 
the fitted slopes (trends) as the observations in a stratified random survey design. 
With the route regression approach, you judge that there has been a change using 
the sites as replicates rather than using years as in the period means approach. 
That is, if you get the same answer (e.g., a positive change) at several sites, then 
you conclude there is a change. However, if the rate of change is not constant 
during the time-series a curved line such as a polynomial may be closely fit to the 
data, but the line doesn’t measure change. 

• Rank-Based (Non-parametric) Statistics – These methods enable analysis of data 
that does not meet the assumptions required by parametric statistics. It is always 
prudent to check whether the data meet assumptions of the statistical model. For 
example, with the route regression model, the route slope estimates should be 
checked for normality, constant variance and outliers. While transformation can 
often normalize observations and stabilize their variance, outliers can 
substantially change the results, and they should not be deleted unless they are 
mistakes. Nonparametric methods can reduce the influence of outliers and do not 
require normality assumptions. However, nonparametric methods are often not as 
flexible as parametric methods. 

• Permutation Methods (Computer intensive) – These methods involve repeated re-
sampling of the original data, and have only been feasible since the advent of 
personal computers. These methods are often useful when it is necessary to use 
data from individual points within a cluster sample as the observational unit. For 
example, one may want to estimate bird-habitat relationships using point data 
along transects, but still calculate the variance among transects, necessary because 
the points are not independent. 

 
Analysis of Channel Islands Exotic Plant Monitoring – Paul Geissler 
Paul Geissler used a sample design called a split block, which includes attributes of both 
a split plot and block designs and is analogous to an agricultural split plot design because 
treatments are not randomly assigned to each cell (see Appendix B).  It includes repeated 
measures in time and space: 
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              Period A    Period B 
              Yr 1 Yr2   Yr3 Yr4 

Plot A 
 Subplot 1    X    X     X    X 
 Subplot 2    X    X     X   X 

Plot B 
 Subplot 3    X    X     X    X 
 Subplot 4   X   X    X   X     
 

The analysis is a paired-t test or ANOVA. 

In the specific example of the Channel Islands data, change was evaluated between two 
time periods, early (pre-1996) and late (1996-2000), and each year was categorized as 
having low (< 13 in) or high (> 13 in) precipitation. The result was a split block in time 
with sites as blocks (or reps) and precipitation categories nested within periods.  The 
resulting ANOVA had Site, Year, and Period, Precipitation and Period x Precipitation 
within Year as sources of variation, and Site x Year as the error term. (See Appendix C 
for examples.) The objective of the analysis was to test for change through time and 
illustrate the importance of precipitation. 

Years at Channel Islands were divided into early and late periods simply by dividing the 
data from the site with the fewest years of observation into two equal periods.  That break 
point was then used for all sites even though some had a longer record, and therefore 
more years in the early category than the late. One could also (more meaningfully?) break 
time periods by, for example, occurrence of a management action, documented climate 
shift, or catastrophic event. 

The original data were used to calculate least-square means (necessary because of 
unequal sample size) and power.  The data were transformed before calculating the 
ANOVA. 

An important observation about the ANOVA approach used at Channel Islands is that it 
is a special case of the general linear model (regression, analysis of variance, analysis of 
covariance, etc.), the standard method for determining relationships among variables. 
Because the analysis assumed an underlying relationship of plant cover with time period 
and precipitation, the sample points were assumed to have equal probability of sampling, 
and the error terms met several necessary assumptions, it was appropriate for “model-
based” analysis. Model-based regression is the traditional version taught in beginning 
statistics and used in statistics packages such as SAS and SPSS. The variance estimate is 
based on deviations of observations from the model, and inference can be made to 
universal model parameters that describe more than the sampled population. 
 
An alternative for survey data is the design-based analysis. There has been much debate 
among survey statisticians on the advantages of design-based and model-based analyses. 
In the design-based approach, the random process comes from the selection of the sample 
and the tests come from the randomization, making no assumptions about the distribution 
of the data. The model-based approach assumes some model, without specifying how 
points are chosen. The test is how well the model predicts the observations, with the 
randomization coming from the data. Many statisticians use a combination of these 

 4



theories and methods: models are often used to analyze data from design-based surveys, 
and randomization is often used to select samples for model-based studies. Geissler was 
especially critical of a pure model-based approach for monitoring that assumes that one 
can adequately model all the environmental and other factors affecting the distribution 
and abundance of animals and plants. Of course, if this were true, one would not need 
randomization. From the design-based perspective, complex survey data, whose sampling 
structure may include stratification, unequal probabilities, and clustering, do not meet the 
assumptions needed for model-based regression. Often the probability of selection of a 
data point is related to the response. For example, the sample frame may target rare plant 
associations and sample them more heavily than they would be by a purely random 
sample of vegetation. Consequently, complex survey data should be analyzed using 
specialized software (e.g., PC CARP, OSIRIS, SUDAAN) because model-based 
inferences about parameters and variance will most likely be wrong. Standard statistical 
packages such as SAS and SPSS can be used only if appropriate transformations and 
procedures are used to “trick” the packages into providing the correct answers. (See Lohr 
Chapter 11 for more information) 
 
Identifying Extremes in Ecological Data – Ed Debevec and Eric Rexstad 
The standard methods for change detection are effective for populations that undergo 
directional changes, but are not effective for eruptive, cyclic, or highly variable 
populations such as microtines. Yet microtines are thought to be potentially sensitive 
indicators of environmental change because their small home range, high metabolic rate 
and rapid population turnover might make them sensitive indicators for changes in 
climate or trophic dynamics. Consequently, it is important to find a solution to 
monitoring these challenging populations. 

Instead of focusing on changes in the population mean through time, Debevec and 
Rexstad have developed methods to identify when an observation in a time-series of a 
monitored variable fails to conform to the previously measured range of natural variation. 
Debevec and Rexstad built on previous literature (cited below), which identifies and 
separates two components of variation in time-series data:  ‘process’ variation, or σ, is a 
measure of inherent variability in the process of interest among years, whereas ‘sampling 
error’ describes measurement error independent of process.  Regarding microtines, we 
can think of their population numbers as a stable “system of chance causes” whose 
variability we want to quantify so we will know when an observation is out of the stable 
pattern.  In a more general sense, this approach to detecting changes in long-term data 
series has application whenever there is need to determine whether change measured for 
an attribute transgresses the normal bounds (or range) of ‘natural’ variation as determined 
from prior data.  

The universe of ecological monitoring includes: 

• Measuring a single attribute at a single instant (= status) 
• Measuring a single attribute repeatedly over a span of time at one location 
• Measuring multiple attributes repeatedly at a location over time 
• Measuring a single attribute over time at multiple locations 
• Measure multiple attributes over time at multiple locations 
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Rexstad began by considering a single attribute measured over time in one location.  The 
data include observations y1, y2, y3 … yn with associated standard errors se1, se2, se3 … 
sen. The standard error for each year also has inherent variability over time. So solving 
iteratively for sigma of the standard errors (σhat) will describe process variability. If the 
system stays within this sigma of sigmas (or variance of the variance estimate), then the 
system is considered stable. Otherwise the system has changed and we need at statistic 
that will compare the next observation with the previously established distribution of 
observations (having mean µhat) based on σhat to let us put a probability on that change.  

A t statistic could work but it must be corrected for the fact that the variance of 
observation n+1 includes process variation and measurement error.  So the appropriate 
statistic is: 

   t = yn+1 – µhat         
    √(σhat2 + se2

n+1)  
 
Then the Probability of Conformity (PC) that the latest observation is from the previously 
described distribution is: 

PC = 2P[tn ≥ | tn+1|]  where tn+1 is one-tailed  
 

See Appendix D for a numeric example. 

This method requires at least three years of baseline data before the variance of the 
variance can be described, and the more baseline years, the more accurate the description.  
The method also assumes that process variation is normally distributed. 

Rexstad presented the results from 100-year simulations illustrating that the metric 
responded appropriately and dramatically to the following situations: 

• Various scenarios 
1. When no change occurs the PC shows no response 
2. Change-point perturbation (e.g., Nile River before and after dam) 
3. Trend – incremental creep, PC detects trend even though it learns from 

previous behavior 
• Test with different levels of process (P) and sampling (S as set by CV) variation (all 

combinations of P = 5, 10, 15 and S = 0.05, 0.10, 0.15) 
• Changes to µ and σ 

1. Increase/decrease µ/σ 
2. Apply perturbation in various years 
3. Apply multiple perturbations in different years 
4. Vary recovery time 

• Autocorrelation 
 
Rexstad also showed that this method works for the other monitoring scenarios described 
above: multiple attributes measured at multiple places or any other combination.  As long 
as test statistics are independent of one another they can be pooled.  Then the PC is 
distributed Chi-squared with degrees of freedom equal to twice the number of data sets. 
The metric successfully detected a change in one of four data sets, and changes in two of 
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four data sets when the changes occurred at different times. The metric is also robust to 
violation of the assumption of independence, either a positive or negative correlation 
among data sets. 

Several summary comments were made about using the PC metric: 

• It is best to use it with annual data.   
• It can be used for periodic data but it will take longer to show a response to change 
• No false positives have occurred in any tests. 
• The metric needs some minimum “warm-up” period: 3-5+ years. 
• PC is a cousin of “cusums”. This measure determines that probability that a 

manufacturing process is operating outside acceptable bounds. It falls within the area 
of statistics known as quality control. 

• Circumstances when it should not be used probably exist but they haven’t been 
identified yet. 

• The metric assumes no knowledge of the system that might suggest when action 
might be taken – if this knowledge exists, it can help determine management 
thresholds. 

 
So, what is the question? Well, analytical methods exist that allow you to frame whatever 
question you like, depending on your objectives and the inherent properties of the 
attribute! The two classes of analyses described above pertain to two fundamental types 
of questions that could be asked. The classic scenario of power analysis is appropriate to 
answer questions about sampling requirements to detect changes of various magnitudes 
and probabilities of error given an underlying variance structure. This approach may 
work best with populations where biologically significant change is expected to be 
feasibly detectable despite annual variation and when measurements are not necessarily 
made annually. The analysis of probability of conformance applies to questions about 
whether a measurement deviates from the normal range of variation. Although useful for 
any time-series, it is especially effective when the normal range of variation is eruptive or 
cyclical and annual measurements are made. These two types of questions broaden the 
conceptual basis of selecting and evaluating potentially useful indicators for monitoring 
to include those with high annual variability. 

 
How much sampling is enough? 
Because monitoring is all about detecting change, we want to design our sampling to 
especially avoid making Type II errors, or missing a change when one has actually 
occurred. If we know the variance of the attribute we are monitoring and the amount of 
change considered important to detect (i.e., effect size), we can determine the power (the 
probability of not making a Type II error) of a test to detect that change. Because 
variance is related to sample size, and power is inextricably linked to effect size, variance 
and alpha (the probability of a Type I error or detecting a change when none has 
occurred), one can examine relationships among power and sample size, specified effect 
sizes, or alpha. 

Using power analysis to determine ‘n’ based on the variance observed during pilot 
studies has become an important tool for designing sampling strategies for monitoring or 
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for adjusting sampling effort in long-term studies. Several canned programs and 
statistical software packages are available to examine power of virtually any statistical 
test used to detect change over time. The reference by Cohen (1988) is a ‘bible’ of sorts 
for those wishing to examine power of many complex analysis of variance designs or two 
sample comparisons (for example comparing two time periods). The programs TRENDS 
(Gerrodette 1987) and MONITOR (Gibbs et al. 1998) are commonly used to examine the 
power to detect linear or exponential trends in time-series data. 

Paul Geissler demonstrated the use of power analysis in the context of comparing means 
of vegetation measurements between two periods of time in the Channel Islands 
(Appendix C). Geissler presented a ‘power curve’ that relates power of the test to 
discriminate a true difference to the magnitude of true difference between period means. 
The graph in Appendix C demonstrates that the replication of sample plots was sufficient 
to detect a 10% difference in mean cover of exotic plants with 80% certainty.  

Kurt Jenkins presented a data set on bats, which he had analyzed using MONITOR, as a 
basis for initiating a discussion of linear trend detection. In the example, Jenkins had 
monitored bat activity levels in 6 old-growth Douglas-fir stands over 3 years in each of 2 
watersheds. The analysis of power indicated that about 14 such stands would have to 
monitored to detect a 5% per annum change in bat activity over 6 years at the watershed 
level. A discussion of the analysis ensued. Program MONITOR evaluates whether the 
mean slope of the trend lines fit to each plot’s data (either linear or exponential) differs 
from zero. The program requires several restrictive assumptions about the data. It does 
not use the data to their full potential because it does not differentiate among annual, 
spatial, and measurement error although they mean different things. Also, there is a 
debate in the literature as to the appropriate measurement of within-plot sampling 
variation. Program MONITOR requires input on the coefficient of variation of slopes 
measured in independent study plots, although such data is generally poorly understood 
and difficult to obtain from short-term studies. If slopes of some plots were positive and 
others negative, MONITOR would see no overall trend and would indicate that additional 
samples are needed, when in fact, interpretation of the spatial patterns may lead to a 
different conclusion. 

The positive aspects of power analysis are that is gets you into the ballpark of an 
adequate sample size and it is useful for evaluating the effectiveness of on-going 
monitoring. So it is a valuable tool for helping you collect sensible amounts of data and 
to think about the analysis before you collect the data. It also facilitates mid-course 
corrections, a process that is absolutely critical to a monitoring program.  

If relative sampling requirements (based on sampling variability) are used as a criterion 
to select attributes of natural systems to monitor, attributes with high process variation 
may fare poorly in a comparison of power if one is estimating trends (e.g., microtines or 
other cyclic or stochastically variable data). It is useful to keep in mind that it may still be 
possible to measure attributes with high process variation, but it may be necessary to 
frame the monitoring question in terms of recognizing when process variation exceeds 
normal ranges. 

In summary, it is often useful to consider sampling requirements when designing a 
monitoring program and for periodic evaluation. Power analysis is especially important in 
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the detections of population declines, based on hypothesis tests. Retrospective monitoring 
of general ecosystem integrity often involves monitoring suites of environmental 
variables co-located at monitoring sites. While it may be possible to optimize sampling 
effort (e.g., number of independent sampling sites) for each variable independently based 
on the sampling variation of each, it will be very difficult to optimize sampling 
sufficiency for several variables measured at the same sites. For example, abundant 
species may require fewer plots to achieve adequate power than rare ones. Finally, 
remember that anything determined a priori is a guess, and that all aspects of the 
sampling should be periodically reevaluated using your experience in the field. In 
addition to being important for evaluating how effectively your monitoring is detecting 
population changes, observed power is an important consideration in allocating 
monitoring resources. 

 
Where shall we put monitoring plots? 
We have been wrestling with the issue of choosing a sample frame. Intuitively, most 
biologists and ecologists gravitate toward a stratified random sample to distribute plots on 
the landscape and to be able to draw inferences to biologically meaningful categories 
(e.g., vegetation types). Statisticians often now encourage a systematic sample. Given the 
terrain and remoteness of some areas of the park, we also have to consider constraints due 
to accessibility. Finally, some monitoring attributes require more intensive measurements 
than others, and therefore must be done in fewer and/or more accessible places. Our 
discussion took all of these issues into consideration. 

The descriptions and properties of different types of samples were provided by Paul 
Geissler. With simple random sampling, each point is randomly selected independently 
of the other points. A compact cluster sample starts with a simple random sample and at 
each point a cluster of samples is taken (e.g., subplots or a transect). With systematic 
sampling, sample points are evenly spaced, often on a grid after a random start. Their 
properties can be summarized this way (see Appendix E for numerical examples): 

Sample Type: Bias of Estimate of 
Mean 

Estimated Variance1 True Variance of 
Estimated Means2 

Simple Random Unbiased Unbiased = Simple Random 
Compact Cluster Unbiased Underestimates > Simple Random 
Systematic Cluster Unbiased Overestimates < Simple Random 
 
1Estimated variance is unbiased if the expected variance – (mean of variances from all 
possible samples of a finite population) equals the true variance 
2True variance is the variance of estimated means drawn form all possible samples of a 
finite population 

Comparing the different types of sample, one important point is that systematic samples 
are desirable because they have lower variance than simple random samples. Cluster 
samples, (e.g., five plots are measured at one site) are attractive because you can collect 
more data for a given amount of travel. However, the five plots are not independent of 
one another and their variance must be calculated among sites. Therefore, you must use 
the cluster means for analysis instead of the individual plots within the cluster. 
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Consequently, the estimate of a population parameter is less precise than with the same 
number of independent samples. A systematic sample made up of clusters, rather than 
individual points, is often advantageous.  

Any of these methods of selecting a sample (simple random, compact cluster, or 
systematic cluster) can be combined with any of the following methods of distributing the 
sample (equal probability, stratified, or unequal probability). With equal probability 
sampling, all areas are equally likely to be selected. With stratified sampling, the park is 
divided into relatively homogeneous areas call strata. Equal probability sampling is used 
within strata, the selection probability and sample density can be different for different 
strata. With unequal probability sampling, the probability of selection and sample density 
can vary continuously across the park. Stratified sampling is a special case of unequal 
probability sampling. 

 

 Pros Cons 
Equal 
Probability 

• Simple to implement 
• All areas are equally important 
• Emphasizes common species 

• Can be inefficient 
• Provides little information on 

less-common species 
 

Stratified • Sample density can be increased 
to provide adequate samples for 
less-common species 

• Sample density can be increased 
in more accessible areas to 
increase sample size 

 

• More complicated than equal 
probability sampling 

• Strata must remain fixed 
forever, although one can switch 
to unequal probability sampling, 
which will allow changes 

 
Unequal 
Probability 

• It has the advantages of 
stratification without need to 
define discrete strata 

• One can add samples without 
regard to the initial strata 

• Probability of selection can vary 
continuously 

• More complex than stratified 
sampling 

• One must keep track of the 
selection probabilities 

 
Andrea Woodward presented the results of a pilot study evaluating systematic and 
stratified random sampling frames in a selected watershed of Olympic National Park. 
Kurt Jenkins presented a ‘straw-man’ sampling frame for consideration as a means of 
integrating extensive monitoring projects with intensive monitoring projects while 
incorporating accessibility strata. After considerable discussion, a consensus began to 
emerge on key features of a sampling frame that would meet the many considerations 
working in a large wilderness park with limited access: 

• Stratify the park by accessibility and black out those parts of the park that cannot be 
sampled for whatever reason. The blacked-out areas may vary with project. Kurt 
Jenkins suggested (and showed maps of) accessibility zones: high = within 1.5 km of 
a road, moderate = within 1.5 km of a trail, low or inaccessible = everything else and 
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everything with >35o slope. The key feature is to explicitly identify the sampling 
universe for each project and the area for inference. Extrapolation to blacked-out 
areas can be accomplished using professional judgment with the caveat that while 
adequate for some purposes, professional judgment will be a weak link in 
controversial decisions, particularly those involving legal challenges. 

• Keep track of the probability of a point occurring in a blacked-out area. If some 
points should become accessible due to changes in technology or location of boats, 
for example, you can sample them, keeping them separate from the rest of the sample 
until you are sure they represent the same thing. 

• Overlay the park with a dense grid of points: say, “5000 points of light”. This grid can 
be sampled differently for different purposes. Measurements that can be done 
extensively (e.g., aerial photography, presence/absence) might be done over the entire 
grid. More intensive projects might be done only within the easily accessible zone, or 
if necessary, on a probabilistic sample of grid points. Effects monitoring for 
management actions should occur on a targeted sample. Hence blacked-out areas will 
differ among projects. 

• Other useful grid strata in addition to accessibility might be east-west regions (to 
reflect the precipitation gradient) and elevation bands. Never stratify on the variable 
you are measuring. 

• Samples can be allocated on the grid using strata, and domains can be created later for 
analysis. For example, vegetation categories may occur across strata. However, points 
for each vegetation category can be combined into a domain by weighting them 
according to the probability associated with the stratum they come from. (See 
Appendix F) 

• Samples can be added to grid strata by re-sampling the grid. The sampling must be 
with replacement and the probability associated with the new points will be 
determined by the intensity of the second round of sampling. 

• Co-locate projects as much as possible to maximize ease of interpretation. 
• Integrate terrestrial and aquatic sampling. We discussed using hydrologic unit 

categories (HUC’s) as used in the Aquatic/Riparian Effectiveness Monitoring 
component of the Northwest Forest Plan for sampling watersheds. However, it was 
concluded that although HUC’s form a logical sampling unit for riparian areas, they 
might not be as useful for terrestrial monitoring. While it is important to draw 
linkages between aquatic and terrestrial monitoring, it may be more informative to 
monitor terrestrial components associated with streams in transects away from those 
streams selected in aquatic monitoring.  

• There is no flexibility in sampling – all samples must come from the point where they 
were intended to be, no matter what the characteristics of that site. 

 
Several other insightful comments were made regarding sampling design that will help us 
conduct effective monitoring: 

• Permanent plots are preferred over temporary ones because they are better able to 
detect change. However, a plan must exist for rotating plots out of the sample because 
plots will inevitably wear out. If plots are treated differently than adjacent areas in 
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any way, the results will be biased. Rotating plots out of the sample in this case will 
reduce bias, but will also reduce the power to detect long-term changes. 

• It is desirable to have both extensive and intensive measurements for each component 
of monitoring. For example, population indices might be measured extensively while 
population estimates can only be measured intensively and are often used for model 
development. Intensive studies are frequently subject to sampling bias because they 
only represent a small area as they cannot be located away from roads; extensive 
studies are subject to measurement bias because with indices you don’t know exactly 
what you are measuring. Intensive, extensive and manipulative studies are all 
essential to a good monitoring program. 

• We need to have enough climate data so that we can extrapolate across the entire 
park. 

• Avoid bias by visiting sites randomly in time instead of, for example, always doing 
the easy sites first then running out of time for the harder ones. 

• Consider picking indicators that can be “cross-dated”, meaning choose indicators 
from different disciplines that one predicts to detect the same perturbations to the 
system. For example, an increase in temperature = reduced numbers of bats = reduced 
cover of Astragulus, etc. This will create integration in the monitoring system. 

• Sampling efficiency could be increased by designing sampling that can be done while 
traveling to the grid sites. This sampling could be included in the sampling design as 
a separate frame. Although biased, the observations might increase precision. 

 
How often is enough? 
Andrea Woodward presented three years of data from permanent vegetation plots to 
discuss how best to distribute samples through time. Because vegetation has high annual 
variability primarily due to changes in weather, her approach was to average the results 
over three years to estimate the average condition for period one.  At some time interval 
later, possibly ten years, she would collect another three years of data to characterize 
period two. A difference between period one and period two would be detected using a 
paired-t test of period means by plots within vegetation categories with error estimated by 
the variation of plots within habitat. Her overall strategy was inspired by Lessica and 
Steele (1996), but it was analyzed substantially differently. 

This approach seemed to meet with approval and many helpful comments were made 
during the discussion. It was noted that the most powerful way to detect change over a 
long period of time is to put all of the sampling effort at the end points rather than 
collecting data in the middle. The number of years collected at each end should be 
determined relative to underlying dynamics. For example, climate exhibits a bi-annual 
pattern in precipitation so it would be ideal to collect a multiple of two years of initial 
data and then again at some time interval later.  It might also be productive to use weather 
as a covariate, as demonstrated in the Channel Islands analysis. Additionally, this method 
will detect a change even if there is high variability in abundance of a taxon among sites, 
assuming that taxa behave similarly regardless of initial cover. However, there is no 
information on population fluctuations during the middle of the period. 

Periodic sampling may be effective for organisms such as plants that are expected to 
show directional changes. It may not be effective for organisms such as microtines, 
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which have eruptive, cyclical population dynamics. In this case, annual data and the 
technique for detecting extreme values described by Eric Rexstad might be more 
appropriate. 

We did not address the question of how to sample the entire frame over time.  For 
example, how might we allocate our annual effort across plots given that they are 
grouped by stratum, must be sampled for three consecutive years, and cannot be done all 
at once? Also, how do we rotate plots out of the sample so they do not “wear out”? These 
questions will have to wait for another time. 
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Steve Fradkin      ONP          360 374-1222 Steven_Fradkin@nps.gov 
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Susan Roberts      ONP          360 565-3046 Susan_Roberts@nps.gov 
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Appendix B  Illustration of Spit-Block Design – Paul Geissler 
The design is like an agricultural field with row and column treatments in strips. The 
treatments are not randomly assigned to each cell as illustrated below, instead of 
something like: 

                B2  C1  A3 
C3  A2  B1 
A1  B3  C2 
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Appendix C   Example of Channel Islands Data Analysis – Paul Geissler 

Here are results and analysis for cover of exotic vegetation from plots on San Miguel 
Island in the Channel Islands, California. 

Least-square means: 

Precipitation Period 1 (’84-’95) Period 2 (’96-’00) Mean 
High (>13 in.) 106 102 104 
Low (< 13 in.) 81 84 83 
Mean 94 93 94 
 
 

 
The analysis is for a split-block (a.k.a. split-plot in time) design (Steel and Torrie 
1980:390-393) 

Analysis of Variance 
Source           df   Mean Square     F      P___      
Site             16   118.780        48.208  0.000 
Year            13      23.532          9.551  0.000 
 

 Period           1        0.149           0.060  0.806 
 Precipitation       1      61.423        24.929  0.000 
 Per. x Precip.       1        2.168          0.880  0.349 
Error (= Site x Yr)  180        2.464 
 
At San Miguel, cover of exotics varied significantly among sites, years and precipitation 
categories but not with period. Therefore, we conclude that there is no significant trend in 
exotic cover with time. Results from Santa Rosa Island (not shown here), however, 
 

showed a significant response to precipitation, period and precipitation x per, indicating a 
change in time that depended on precipitation.  

Here is a power curve for San Miguel data showing power as a function of differences 
between means. This curve was generated from the ANOVA using tables from Cohen 
1988, Chapter 8.  It can also be generated from SYSTAT and the code was provided. 
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Appendix D  Numeric Example of Calculating Probability of Conformity – Eric 
Rexstad 

Let’s say that after 9 years of measuring a population you estimate: 

µhat9 =  4.059 
σhat9 = 0.192 

 
In year 10 you observe: 

 y10 = 3.674 (population estimate in year 10) 
 se10 = 0.150   (standard error of population estimate in year 10) 
 
and you want to know the probability that y10 comes from the distribution described by 
years 1-9.  

Calculate t10 =     yn+1 – µhat  =     3.674 - 4.059  =    -1.584 
√(σhat2 + sen+1

2)    √(0.1922 + 0.1502) 

The probability that the value of y observed in year 10 belongs to the same distribution as 
those from years 1-9, named the Probability of Conformity (PC), is: 

PCn+1 = 2p(tn ≥ |tn+1|)  = 2p(t9 ≥ |t10|) = 2 x 0.074 = 0.148 = PC10 
 
This means that there is a 15% chance that the observation of y in year 10 came from the 
same distribution as years 1-9. 

Note: In this example, p was read from a one-tailed t table.  If you use a two-tailed table 
you do not need to multiply by 2. 

If y10 = 3.5 and se10 = 0.15, there is only a 5% probability that the observed y came from 
the same distribution as years 1 to 9. 
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Appendix E   Comparison of Sample Types—Paul Giessler 

Imagine a sample coming from a gradient with population values of 1 to 9. The true mean 
is 5. Now take a sample of 3 numbers in three different ways: 

Simple Random Sample 
If you drew all 84 possible samples, you would calculate an unbiased estimate for the 
mean (5) and an unbiased estimate of the variance (1.67) 

Compact Cluster Sample (bird samples are often taken this way) 

Cluster the numbers into threes and take the mean of each cluster: 

 1 2 3    4 5 6    7 8 9 
   2       5       8   
 
You would estimate the mean to be 5 and it is unbiased. However, the variance is much 
larger than for a simple random sample because the groups are autocorrelated. The 
variance estimate would be 0.22 and underestimates the true variance of 6.00. In an 
ANOVA, you usually find that the clusters are different. It is possible to calculate a 
design effect to correct the variance estimate. 

Systematic Cluster Sample 
1 2 3 4 5 6 7 8 9 

A systematic sample of this population would be 1, 4, 7 or 2, 5, 8 or 3, 6, 9. In any case 
you would have an unbiased estimate of a mean of 5. The variance estimate of 2.00 
overestimates the true variance of 0.67. There is no effective technique for correcting the 
variance. The advantage of this sample scheme is that the true variance is smaller than the 
variance of a simple random sample. 

 

 19


	Introduction
	What is the question? How do we frame the question of change detection?
	How much sampling is enough? When is power analys

	What is the question?
	Standard Methods Used to Detect Change
	Analysis of Channel Islands Exotic Plant Monitori
	An important observation about the ANOVA approach used at Channel Islands is that it is a special case of the general linear model (regression, analysis of variance, analysis of covariance, etc.), the standard method for determining relationships among
	Identifying Extremes in Ecological Data – Ed Debe
	PC = 2P[tn ( | tn+1|]  where tn+1 is one-tailed


	How much sampling is enough?
	Where shall we put monitoring plots?
	How often is enough?
	References  provided by Paul Geissler and Eric Rexstad
	Appendix A  Workshop Participants
	NameAffiliationPhoneEmail

	Appendix B  Illustration of Spit-Block Design – P
	B2  C1  A3

	Analysis of Variance
	SourcedfMean SquareFP___
	
	Calculate t10 =  yn+1 – \(hat  =  3.674 - 4.059 



	PCn+1 = 2p(tn ( |tn+1|)  = 2p(t9 ( |t10|) = 2 x 0.074 = 0.148 = PC10
	Simple Random Sample
	Systematic Cluster Sample


